
Fast Automatic Level of Detail for Physically-based Materials
Lutz Ke�ner

NVIDIA Corporation
lke�ner@nvidia.com

Figure 1: Examples from a 600 materials test set, showing the original material (large images), a simpli�cation to a Fresnel-
layered glossy over di�use material (medium images), and a simpli�cation to a di�use-only material (small images).

ABSTRACT
Using a term rewriting system, simpli�cations of physically-based
materials described in a declarative programming language can be
created automatically. Sets of rules for the term rewriting system
allow for customizing simpli�cations according to use cases. Exam-
ples include automatic level-of-detail generation or simpli�cation
of materials for faster rendering in realtime viewports and games.

CCS CONCEPTS
•Computing methodologies →Rendering; Rasterization; Ray
tracing; Re�ectance modeling;

KEYWORDS
level of detail, physically-based material, term rewriting system
ACM Reference format:
Lutz Ke�ner. 2017. Fast Automatic Level of Detail for Physically-based
Materials. In Proceedings of SIGGRAPH’17 Talks, Los Angeles, CA, USA, July
30 - August 03, 2017, 2 pages.
DOI: h�p://dx.doi.org/10.1145/3084363.3085062

1 INTRODUCTION
Simpli�cation and level of detail can reduce the cost of rendering
while preserving the �delity of the result. Here, we simplifymaterial
complexity with a novel level-of-detail framework in a physically-
based rendering (PBR) context.

To de�ne materials of rich visual �delity, renderers mostly used—
and still use—procedural shading languages such as RSL, GLSL,
HLSL, CgFX, or C/C++ with an API. Existing work on material
simpli�cation focuses on such shaders, where the challenge is the
semantic gap between the material domain and the chosen pro-
gramming language. Consequently, solutions rely on a full compiler
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH’17 Talks, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5008-2/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3084363.3085062

implementation, its semantic analysis, heuristics and costly opti-
mization strategies to reduce shader complexity.

With PBR, a natural separation of materials into texturing func-
tions and distribution functions emerged, such as the Bidirectional
Re�ectance Distribution Function (BRDF), whichmodels the surface
re�ectance behavior. While procedural languages remain the solu-
tion for texturing functions, more declarative language paradigms
are used to create rich distribution functions. One example is the
NVIDIA Material De�nition Language (MDL) [Ke�ner et al. 2015],
which uses an algebra of elemental distribution functions, modi�ers,
and combiners to de�ne a structured representation of a combined
distribution function. Another example is the Open Shading Lan-
guage (OSL) [Sony Pictures Imageworks Inc., et al. 2016], which
uses the concept of closure types to embed distribution functions
with a restricted algebra in a procedural shader.

Such higher-level declarative de�nitions can be more easily ana-
lyzed, optimized, and simpli�ed. In particular, our level-of-detail
framework applies the ideas of term rewriting systems to these
declarative de�nitions. Term rewriting rules transform complex
distribution function expressions into simpler distribution function
expressions while possibly moving the desired e�ect of the complex
expression into more complex texture functions.

1.1 Related Work
Related methods look at simpli�cation as a non-realtime pre-pro-
cessing and optimization step. �ey look at GPU shader programs
and, for example, apply compiler technology to migrate fragment
shader work loads to interpolated vertex shader computations.

[Olano et al. 2003] use the idea of loophole compiler optimization
and focus on reducing texture accesses. [Pellacini 2005] simpli�es
procedural shaders by applying simpli�cation rules on the abstract-
syntax-tree representation. �e lower abstraction level and the tree
size lead to an optimization algorithm with long runtimes. [Si�hi-
Amorn et al. 2011] extend these ideas with genetic programming.

[Wang et al. 2014] use code transformations, surface subdivision,
and approximation rules. �e approximation rules approximate
per pixel computations in the fragment shader based on high-order
polynomials ��ing on surfaces.

SIGGRAPH’17 Talks, July 30 - August 03, 2017, Los Angeles, CA, USA L. Ke�ner

Recent work by [He et al. 2016] uses reduction of detail by far-
�eld approximations or complete elimination of textured e�ects,
such as the transition from normal maps to a glossy BRDF, where
dropping normal maps also eliminates the need for tangent vector
computations in the vertex shader.

2 TERM REWRITING FOR MATERIALS
�e declarative de�nition of the distribution functions of a physical-
based material model can be represented as an expression tree in
an algebra that consists of all distribution functions speci�ed in the
language and the operations to combine them. Argument values
for the distribution function parameters are determined by literal
values and function call graphs. Directed acyclic call graphs may
be handled by unrolling them to a tree.

A rule for a term rewriting system consists of a pa�ern that can
match a sub-expression in the declarative part of the expression
tree, and a replacement expression. �e rule

mix(w1, diff(c1),w2, diff(c2))→ diff(w1c1 +w2c2)

is a simple example for a pa�ern that matches a weighted mix of
two colored di�use distribution functions and replaces the pa�ern
with a single di�use distribution function with a weighted sum of
colors.

Given a suitable set R of rules and applying rule a�er rule to an
initial material expressionM1 creates a sequence

M1
R
=⇒ M2

R
=⇒ · · ·

R
=⇒ Mn

of materials, where assuming termination R reducesM1 to a �nal
expressionMn . Term rewriting is a simple and e�cient means to
create one simpli�ed materialMn or a whole sequence <Ml> for a
level-of-detail representation in one process.

2.1 Creating Suitable Sets of Rewriting Rules
Important questions for a rule set of a term rewriting system are
termination, con�uence (is there a unique normal form), and runtime
e�ciency. Typical evaluation strategies for e�cient systems are
top-down or bo�om-up.

In particular, a bo�om-up evaluation strategy leads to a sys-
tematic process of deriving a rule set whose correctness follows
easily by induction. We start by de�ning the normal forms that
are terminal states in the derivation chain, such as a single di�use
material, or a Disney-principled material model. �e full process
consists of the following steps:

(1) De�ne the set N of all normal form expressions.
(2) For all distribution functions D of the language and com-

binations of how normal forms in N can be used as argu-
ments for the parameters of D, create a matching pa�ern.

(3) Eliminate pa�erns that are equal to a normal form in N .
(4) For each of the remaining pa�erns, choose a normal form

from N that is a good replacement expression and de�ne
its arguments based on arguments of the match. �e choice
of the normal form and its arguments can introduce ap-
proximations and give room for optimizations.

Rules, like the example above, may transfer complexity from the
declarative expression to the regular function call graph. Other
rules might lower total complexity by just picking parts with the

highest weight. Function call graph complexity can be further re-
duced with the complementary and orthogonal technique of texture
baking, i.e., evaluating function subgraphs over a suitable domain
and replacing the subgraph with a simple bitmap texture lookup.

Rules can be complemented with partial evaluation, where func-
tions are evaluated or sampled at simpli�cation time. �e resulting
value can control rule behavior or be baked for use at render time.

�e ideas of the framework presented here apply analogously
to all kinds of distribution functions, such as for transmission,
emission, volume e�ects, as well as other parts of a material, such
as normal maps, and general function call graphs, assuming their
components are speci�ed as algebra.

3 RESULTS
Wehave implemented the framework based on theNVIDIAMaterial
De�nition Language (MDL). We �rst created rule sets targeting a
single di�use model and a Fresnel-layered glossy over a di�use
material including multi-layer normal maps and cutout masks. �e
rule sets contain between seven and 23 rules. We applied those
rules on a set of 600 diverse materials from di�erent domains; see
Figure 1 for examples rendered with NVIDIA Iray. �e method
nicely transfers important features of a material within the limits
of the target models. Simpli�cation (without texture baking) takes
1–2 ms on a 2.6 GHz Intel Core i7 for one material.

�e system is very fast for practical material complexities and
can be used just-in-time in applications editing original materials
and their parameters. It bridges the gap between a rich material
model and the limited material models common in game engines
and editing viewports. It can also accelerate o�ine renderers by
replacing the detailed materials in certain contexts, such as indirect
lighting contributions.

4 CONCLUSION
We presented a framework that shows how a term rewriting system
can simplify materials represented by expressions. It uses rule sets,
a powerful and easy-to-use way to specify simpli�cations, which
can target �xed material models or create sequences of materials
for a level-of-detail representation.

ACKNOWLEDGMENTS
�e author would like to thank Jan Jordan for valuable contributions
to this project as well as Alexander Keller andMike Blake for helpful
suggestions on this paper.

REFERENCES
Y. He, T. Foley, and K. Fatahalian. 2016. A System for Rapid Exploration of Shader

Optimization Choices. ACM Trans. Graph. 35, 4 (July 2016), 112:1–112:12.
L. Ke�ner, M. Raab, D. Seibert, J. Jordan, and A. Keller. 2015. �e Material De�nition

Language. In Proc. of the Workshop on Material Appearance Modeling. 1–4.
M. Olano, B. Kuehne, and M. Simmons. 2003. Automatic Shader Level of Detail. In

Proc. of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware
(HWWS ’03). 7–14.

F. Pellacini. 2005. User-con�gurable Automatic Shader Simpli�cation. In ACM SIG-
GRAPH 2005 Papers (SIGGRAPH ’05). 445–452.

P. Si�hi-Amorn, N. Modly, W. Weimer, and J. Lawrence. 2011. Genetic Programming
for Shader Simpli�cation. In Proc. of the 2011 SIGGRAPH Asia Conference (SA ’11).

L. Gritz (Ed.). 2016. Open Shading Language 1.7: Language Speci�cation. Sony Pictures
Imageworks Inc., et al.

R. Wang, X. Yang, Y. Yuan, W. Chen, K. Bala, and H. Bao. 2014. Automatic Shader
Simpli�cation Using Surface Signal Approximation. ACM Trans. Graph. 33, 6 (2014).

	Abstract
	1 Introduction
	1.1 Related Work

	2 Term Rewriting for Materials
	2.1 Creating Suitable Sets of Rewriting Rules

	3 Results
	4 Conclusion
	Acknowledgments
	References

