
Large Scale VFX Pipelines
Matthew Chambers

Zorroa
mrc@zorroa.com

Justin Israel
Weta Digital Ltd.

justinisrael@gmail.com

Andy Wright
Weta Digital Ltd.

awright@wetafx.co.nz

Figure 1: (left) Plow Scheduler Graph, (right) Plow Task Execution Graph

ABSTRACT
To ensure peak utilization of hardware resources, as well as han-
dle the increasingly dynamic demands placed on its render farm in-
frastructure, WETA Digital developed custom queuing, scheduling,
job description and submission systems - which work in concert to
maximize the available cores across a large range of non-uniform
task types.

The render farm is one of the most important, high traffic com-
ponents of a modern VFX pipeline. Beyond the hardware itself a
render farm requires careful management and maintenance to en-
sure it is operating at peak efficiency. In WETAs case this hardware
consists of a mix of over 80,000 CPU cores and a number of GPU
resources, and as this has grown it has introduced many interesting
scalability challenges.

In this talk we aim to present our end-to-end solutions in the ren-
der farm space, from the structure of the resource and the inherent
problems introduced at this scale, through the development of Plow
- our management, queuing and monitoring software. Finally we
will detail the deployment process and production benefits realized.
Within each section we intend to present the scalability issues
encountered, and detail our strategy, process and results in solving
these problems. The ever increasing complexity and computational
demands of modern VFX drives WETAs need to innovate in all
areas, from surfacing, rendering and simulation but also to core
pipeline infrastructure.

CCS CONCEPTS
• Information systems→Computing platforms; •Applied com-
puting → Enterprise computing infrastructures;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’17 Talks, July 30 - August 03, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5008-2/17/07. . . $15.00
https://doi.org/10.1145/3084363.3085021

KEYWORDS
distributed computing, pipeline, queuing, scheduling

ACM Reference format:
Matthew Chambers, Justin Israel, and Andy Wright. 2017. Large Scale VFX
Pipelines. In Proceedings of SIGGRAPH ’17 Talks, Los Angeles, CA, USA, July
30 - August 03, 2017, 2 pages.
https://doi.org/10.1145/3084363.3085021

1 OVERVIEW
WETAs hardware consists of 5 generations of blades, rackmount
workstations, niche rendering hardware, alongside many genera-
tions of artist workstations. This lack of uniformity poses a signif-
icant challenge to any scheduling system, but add in the diversity
of tasks required to run on this hardware and the problem becomes
much more complex.

For many years WETA used Pixars Alfred for scheduling and
dispatching, and over this time we have successfully adapted and
extended it with custom priority systems to handle our available
resource. A render farm expansion increased the resources signifi-
cantly making it difficult to keep the machines fully utilized under
this system. This coincided with Alfreds effective end of life - so
an opportunity arose to explore other alternatives in this space.
While resource utilization is a primary concern to a scheduler the
suite of tools we had built around Alfred for queue management
were significant, therefore any new system would require a robust
management layer as well as a complete API for inspection and
modification. Ultimately rather than utilize or customize an off-
the-shelf product WETA chose to develop a custom solution from
the ground up.

The resulting system - Plow - is built with an open API and pro-
vides rich statistical information that can be leveraged to rapidly
build tools and graphs that help us drive our render farm effectively.
A combination of ElasticSearch and Kibana lets us both manage
the volume of data that Plow produces and rapidly produce visu-
alizations to gain insight into the way our tasks ran. Graphite and
Grafana provide graphing services allowing for historical views on
tasks and help us detect trends in utilization over time.

https://doi.org/10.1145/3084363.3085021
https://doi.org/10.1145/3084363.3085021


SIGGRAPH ’17 Talks, July 30 - August 03, 2017, Los Angeles, CA, USA M Chambers et al.

2 PLOW - QUEUE MANAGEMENT,
SCHEDULING, MONITORING

Plow is WETAs custom queue solution. It is a centralized task
management system designed to maximize throughput and caters
specifically to visual effects workflows.

2.1 Plow Server
When architecting a render queue management system one of the
first goals is always scalability. In the past, achieving scalability
meant separating the jobs into distinct processes which handled all
of their own dispatching and communication with a central brain.

Another technique for scalability comprises of many separate
processes or crond jobs that handle a small part of the workload.
Over time, many distributed render queue systems can devolve into
a sprawling array of processes and specialized databases running
all over the facility. A recent trend in render queue architecture has
been the movement from this distributed style architecture, to a
centralized architecture where all job data is kept in a single data
store. This can create its own issues however around performance
and redundancy.

Plow is a hybrid of both the distributed and centralized model. It
is built to run on a single SQL datastore, however it features cluster-
able business logic that can be used to provide performance, redun-
dancy, and caching to any of its five major components: schedul-
ing, dispatching, client API, render node API, and data mainte-
nance. Each of these components has been designed as a micro-
service which runs within a single Plow server process, and each
of these micro-services can be independently tuned, enabled or dis-
abled. This architecture allows for specialized nodes which can be
uniquely configured to handle a particular task or type of traffic.
Large Plow deployments, such as that used to manage WETAs on-
site render farm, run nodes specifically for handling scheduling
and dispatching, while another set of nodes handle the massive
amount of API calls generated by the client tools and libraries. All
of these nodes work together as one large clustered application to
provide a scalable and redundant queueing system for our pipeline.
Smaller, single node Plow deployments are able to be setup to run
on-set and have even been used remotely on-location in the forests
around Vancouver. The single process design of Plow makes it easy
for administrators to get Plow up and running anywhere to handle
any scale of resource.

2.2 Plow Render Node Daemon
A standard component to any render queue solution is a running
daemon process on each worker host, allowing tasks to be started
on behalf of the scheduler and the submitting user. A well designed
daemon would ideally have some of the following qualities: Being
low impact on the host, so as not to waste resources that could be
used for actual tasks; Concurrent handling of task scheduling com-
munications; Accurate metric reporting for active and completed
tasks; Multi-platform support for improved deployment portabil-
ity and flexibility; Extra smarts surrounding the reservation of re-
sources to each scheduled task.

Plows Render Node Daemon (rndaemon) is a custom solution,
with modular multi-platform support for Linux, OSX, and Win-
dows. Linux support makes heavy use of Control Group containers

(cgroups) in order to jail each scheduled task to the exact and ideal
set of logical cores that have been allocated. Cgroups also provide
fine-grained control over processes management, and highly ac-
curate metrics collection. rndaemon also has a sizeable RPC API
for control by both the Plow Server, and integration with the Plow
Desktop Control UI application, allowing users to opt their ma-
chines into the render farm as various levels of commitment.

2.3 Plow Client API and Frontend
Having a strong render queue server (scheduling, dispatching, pro-
cess managers) is only half the story of a complete solution. Rich
user-facing tooling is desirable providing clients with a transpar-
ent view onto the state of their jobs, allowing them to easily build
reusable tools specific to their pipelines and workflows, as well as
allowing for extension of the core toolset with custom logic. Plows
RPC client API is built on top of Apache Thrift, allowing bindings
to be generated for multiple programming languages. Official client
APIs exist for Java, C++, and Python, and some departments have
built frontend web tools, leveraging the JavaScript AJAX generated
API.

The client API is very comprehensive and high level, which
means that 99% of the operations that one could do in the plow-artist
man- agement GUI are directly available via the API. Plows client
APIs are fault-tolerant, load-balancing, thread-safe, and ensure that
ac- cess patterns are made through an approved public interface
written by the core developers.

Alongside the client API, Plow provides a modern and powerful
suite of GUI tools. plow-artist and plow-wrangler are panel-based
(modular) GUIs for viewing and managing the state of the render
farm. Different panels, and panels grouped into custom Workflow
layouts, provide different views and tools catering to Artists, Wran-
glers, and Production. The GUIs also offer various hooks for cus-
tomizations on a per-user or per-pipeline basis. These hooks in-
clude custom log viewers, custom context-aware actions discovered
at runtime, custom media viewers associated with file types, and
the integration of arbitrary attributes on Jobs and Layers with view
functionality. plow-desktop-control is a system tray GUI allowing
users to conditionally opt their workstations into the render farm
resource pool. Users can participate in tasks for specific projects or
make their machine available to the whole render farm, allocating
as little or as much memory and cpu as they wish.

3 PRODUCTION IMPACT
Deploying a large scale change to core infrastructure at a facility
that sees infrequent downtime is no easy task. Kenobi - our job
description framework - allowed existing pipelines to migrate to
Plow with minimal risk to production. The flexibility and scala-
bility of the new systems, along with a demonstrated ability to
successfully process complex jobs that had not been previously
possible, motivated key stakeholders to promote adoption across
departments.

With Plow deployed WETA saw a number of benefits, from im-
proved resource utilization to better management and monitoring
tools for artists. A much richer set of statistics allowed WETA to
spot inefficiencies, optimize job descriptions and continually tune
the render farm infrastructure.


	Abstract
	1 Overview
	2 Plow - Queue Management, Scheduling, Monitoring
	2.1 Plow Server
	2.2 Plow Render Node Daemon
	2.3 Plow Client API and Frontend

	3 Production Impact

