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Figure 1: Recovering specular-free video sequences from rank-constrained data. (a) an input image from the sequence. (b)
labeling results of the damaged regions. (c) low-rank representation of prior temporal data. (d) search space constructed from
aligning the prior data and used to find the optimal information for the missing region. (e) resulted specular-free output.
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1 INTRODUCTION

The appearance of objects is significantly affected by the illumina-
tion conditions in the environment. Particularly with objects that
have strong reflectivity as they suffer from more dominant spec-
ular highlights, causing information loss and discontinuity in the
image domain. Many computer vision algorithms are vulnerable to
errors in the presence of specular highlights because they violate
the image consistency assumption and hinder the performance of
many vision tasks, such as object recognition, tracking and surface
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reconstruction [Artusi et al. 2011]. This is further complicated when
we consider video sequences with free-moving cameras or dynamic
objects, which is the focus of this work.

Most existing solutions for retrieving missing information in
complex video sequences, for example [Ebdelli et al. 2015; Newson
et al. 2014], are based on a set of minimization procedures, some-
times up to four, which results in a high computational demand.
They also use temporal information and align neighboring frames
using homography-based algorithms, which is prone to failure,
causing error propagation and unpleasant visual results.

We present a novel framework for specular-free video recovery
that is equally effective for both static and moving camera and with
the presence of object motion (see Figure 1). Our main contributions
and what distinguish our work from existing approaches are:

o A fast and effective labeling process based on a set of color
variation and gradient information conditions.

o A low-rank representation of prior temporal data which
decreases computational time and results in better minima.

o A robust sparse-based alignment solution that reduces error
propagation.

2 TECHNICAL APPROACH

Consider a video sequence F = {fs}f=1 with S frames of size X x Y
and a finite Lipchitz domain Q ¢ R? — R? with d = 3 for the red,
green, and blue (RGB) channels. To recover specular-free frames,
our solution applies two main steps illustrated in Figure 1. The first
step is an adaptive specular highlights labeling approach that takes
into account information from the current frame to accurately label
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Figure 2: Our solution arranges the prior temporal data in
a Casorati Matrix C in order to explode the correlation be-
tween the data and find the low r rank.

specular pixels. Two labels are used in this step: (i) specular region
(G) and (ii) non-specular region (G).

A given pixel f;(x,y) is labeled as G if it meets one of two con-
ditions. The first condition identifies high intense specular regions
using a color-adaptive technique that takes into account the stan-
dard deviation of the color variations in the given frame. Pixels that
fall within one standard deviation away from the brightest pixel
value (the one with maximum intensity) are considered specular
pixels. The second condition uses the gradient information to detect
the less intense parts of the specular highlights.

Once we have the labeling results, the second part of the so-
lution is a robust inpainting process that utilizes low-rank prior
temporal data to restore the damaged regions. Inpainting finds the
optimal value for each missing pixel in G by minimizing an energy
functional that uses two data sources: the labeling results and a
low-rank search space.

The search space fsallg " is created by aligning a short-term tem-
poral window of W past frames represented in a low-rank manner
and denoted as Fyy = { fs—w},‘:,vzr The low-rank representation of
the frames is achieved using a Casorati matrix and applying the
theorem of decomposition to exploit the high correlation between
the consecutive frames (see Figure 2). The alignment of the low-
rank frames in Fyy is achieved using an energy functional that finds
the best transformation that aligns a set of control points, initially
uniformly spaced, defined on the frames.

3 EXPERIMENTAL RESULTS

We demonstrate the performance of our approach by carrying out
experimentation with different synthetic and in-vivo datasets. All
results and comparisons were run under the same condition using
an Intel(R) Core i7-32GB RAM, and a Nvidia GeForce GT 610.

We quantitatively evaluated our labeling results against the
ground truth using three measures: Dice’s coefficient Dc¢, which
measures the similarity between two labeling results, accuracy, and
error rate. For all the datasets, the overall averages were 0.82, 99%
and 1.94% for Dc, accuracy and error rate respectively.

To evaluate the inpainting, we compared our approach against
two commercially available softwares (Inpaint software ! and adobe
Photoshop 2) and also against Newson’s solution [Newson et al.
2014] which is, to our best knowledge, one of the most robust
approaches. We used the homogeneity variation in our evaluation

!https://www.theinpaint.com/
Zhttps://www.adobe.com/Photoshop/
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Figure 3: Evaluation was performed exhaustively in five
datasets and the results show visually pleasing, specular-
free outputs even with complex scenes.

measured by the coefficient of variation CV. The results showed
that our approach outperformed the compared approaches and
achieved the smallest CV for all datasets.

We also evaluated the repercussion of promoting low-rank in
our solution in terms of computational time. The results showed
that promoting low rank decreased the computational time to an
average of 6 times less than using full-rank data. In average, full-
rank demanded 23 iterations per frame while low-rank 18 iterations.
This shows that promoting low-rank allowed our global approach
to achieve a good minima in a computationally efficient manner.

Apart from the numerical results, our global approach can be
visually inspected in Figure 3 where we selected interesting frames
that show complex cases. Our approach was able to recover the
lost information and achieve visually pleasing results with those
cases and even with complex objects, such as organs (heart dataset),
where our solution was able to retrieve the texture accurately.
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