
Procedural Feature Generation for Volumetric Terrains
Rahul Dey

Bournemouth University & Sony
Interactive Entertainment Euro R&D

13 Great Marlborough Street
London, UK W1F 7HP

i7697909@bournemouth.ac.uk

Jason G. Doig
Sony Interactive Entertainment Euro

R&D
13 Great Marlborough Street

London, UK W1F 7HP
Jason.Doig@sony.com

Christos Gatzidis
Bournemouth University, Faculty of
Science and Technology, Creative

Technology Department
Poole House, Talbot Campus
Poole, Dorset, UK BH12 5BB
cgatzidis@bournemouth.ac.uk

Figure 1: Procedurally generated features with our method: arches (left), an overhang (middle) and a cave (right).

ABSTRACT
In this work we present separate procedural methods to generate
features that are found in natural terrains which are difficult to
reproduce with heightmap-based methods. We approximate over-
hangs, arches and caves using procedural functions and a reduced
set of parameters. This produces visually plausible terrain feature
topologies as well as a high degree of artistic control. Our approach
is more intuitive and art-directable than other existing volumetric
methods that are more complex to integrate into existing voxel
engines, due to the framework changes necessary, or rely on auto-
matic procedural generation, thus reducing the ability to provide
creative input.

CCS CONCEPTS
•Theory of computation→Computational geometry; •Com-
puting methodologies → Real-time simulation; Volumetric
models; Shape modeling;

KEYWORDS
Procedural generation, Terrain, Volumetric

ACM Reference format:
Rahul Dey, Jason G. Doig, and Christos Gatzidis. 2017. Procedural Feature
Generation for Volumetric Terrains. In Proceedings of SIGGRAPH ’17 Posters,
Los Angeles, CA, USA, July 30 - August 03, 2017, 2 pages.
DOI: 10.1145/3102163.3102216

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’17 Posters, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5015-0/17/07.
DOI: 10.1145/3102163.3102216

1 INTRODUCTION
Terrains are a key feature for portraying realistic virtual outdoor
environments. Current methods often use heightmap-based terrain
representations, where a 2D displacement map perturbs vertices
on a polygonal grid. However, heightmaps do not allow for specific
features of terrains such as cliffs, naturally-formed arches and caves.
In contrast, volumetric representations of terrains are not limited in
any such way and are gaining traction in practical applications such
as procedurally generated computer games. This work presents
procedural methods for generating features that are found in real-
world terrains and can be complex to represent using heightmap-
based methods.

Existing methods for creating overhangs have applied vector dis-
placement to output vertices of heightmap-based terrains [Gamito
and Musgrave 2001], though this work relies on unintuitive manip-
ulation of the vector field data to achieve desired results. A hybrid
approach introduced by [Peytavie et al. 2009] uses a signed-distance
field to construct the terrain mesh. While implicit surfaces allow for
many operations to be performed on the mesh, generating implicit
functions can be computationally expensive. Recently, [Becher et al.
2017] presented the concept of voxelizing input feature curves to
form the terrain mesh, allowing the formation of features such
as overhangs and arches. However, our method generates a set of
local delta values that can be applied directly to the volumetric data,
which eliminates the need for a voxelization step.

2 OUR APPROACH
This work has been produced for integration into Sony Interactive
Entertainment’s proprietary game engine PhyreEngineTM and pro-
poses a procedural method for each of the three main features found
in terrains by directly acting on the underlying volume represen-
tation. It extends prior work with voxel grammars where terrains



SIGGRAPH ’17 Posters, July 30 - August 03, 2017, Los Angeles, CA, USA R. Dey et. al.

are generated using a set of transforms [Dey et al. nd]. These trans-
forms are a set of voxel replacements and the features described in
this work here have been developed as more intuitive extensions.
Overhangs and arches are functions that generate a set of local vox-
els that can be additively blended with the existing data to create
the desired topologies. The cave generation method is a subtractive
function utilising a particle-based approach that produces a set
of negative density values removing voxels in the terrain (when
blended). The user begins with either an empty or initialised voxel
dataset. They can then add either overhangs, arches or caves which
are layered on top of the existing data to ensure the editing is non-
destructive. The parameters for the features are set, an optional
transformation matrix (translation and rotation) is applied to the
feature and the resulting voxel values are submitted to the GPU
for surface extraction and rendering. Each feature has user-defined
dimensions in voxels (Fdim ) and the index of each voxel (I ) being
processed is calculated as the unit cube coordinates of the current

voxel (Vindex ) within the feature’s bounding box (I =
Vindex
Fdim

).

2.1 Overhang Generation
Cliffs and overhangs are constructed by approximating their topol-
ogy as a bicubic Bézier surface. A Bézier surface (S(u,v)) uses a 4x4
geometry matrix (G) of vectors containing the control points of the
surface. The second and third rows of control points act as erosion
parameters to the resulting overhang. The final surface function
is combined with a parabolic function (P(u)) using a user-defined
exponent (k) to emulate realistic plateaus and is shown in Equation
1, where u = Iz and v = 1 − Iy .

U =
[
1 u u2 u3

]
V =

[
1 v v2 v3

]
B =


1 0 0 0

−3 3 0 0
3 −6 3 0

−1 3 −3 1


S(u,v) = U · B ·G · BT ·VT

P(u) = (4u · (1 − u))k

DClif f (u,v) =

{
1, if Ix < min(S(u,v), P(u))

0, otherwise

(1)

2.2 Arch Generation
Arches are created by sweeping a sphere along a cubic Bézier spline,
with the four control points governing the resultant shape. Each end
of the arch has optional tapering parameters (radius multipliers (Mi )
and exponents (Ei )), as well as interpolants (Ii ) to define where the
tapering occurs. This results in feasible natural arches simulating
greater erosion towards the middle of the arch. At each step of the
sweep (t ), the radius (r ) is updated using the tapering parameters
(Ti ). This uses the function in Equation 2 whereV is the voxel being
processed and P is the position of a voxel after the radius has been

applied at the current step.

Ti = r ·Mi · (1 − IEii )

radius = r +T0 +T1

DArch (V , P) =

{
1, if ∥P −V ∥ < radius

0, otherwise

(2)

2.3 Cave Generation
In order to generate cave-like structures, we adopt a particle-based
approach where a sphere is traced in a user-specified direction for a
set number of iterations. A decay parameter (λ) reduces the radius
of the sphere for each iteration. At each step (t ), the direction (D) is
further affected by gravity (G) and a velocity vector (U ) generated
by curl noise [Bridson et al. 2007]. This efficiently computes a
viable estimation of speleological erosion, reducing the need for a
complex fluid dynamics system sculpting the internal structure of
the cave. The position (P ) and radius (r ) of the particle are used to
check whether a voxel is within the sphere, and therefore subject
to removal, using Equation 3.

P(t) = P + t · (D +G +U )

r (t) = r − tλ

DCave (V , P , r ) =

{
0, if ∥P −V ∥ < r

1, otherwise

(3)

3 EXPERIMENTAL RESULTS
We have implemented these methods using a sparse voxel buffer.
However, any underlying volumetric representation can be used as
our methods are independent of any data structure, meaning that
integration into existing procedural volumetric engines is trivial
assuming the voxel data can be read from and written to. The mesh
is extracted from the volumetric data using surface nets [Gibson
1998]. Initial results can be seen in Figure 1 and show features inte-
grated with a terrain generated using Perlin noise. For future work,
we are developing GPU accelerated feature generators to create
more detailed, large scale features at higher voxel resolutions and
maintain interactive rates in order to maximise design efficiency.

4 ACKNOWLEDGEMENTS
We thank the EPSRC-funded Centre of Digital Entertainment project
(EP/G037736/1) and Sony Interactive Entertainment Euro R&D for
their support plus NVIDIA Corporation for hardware donations.

REFERENCES
Michael Becher, Michael Krone, Guido Reina, and Thomas Ertl. 2017. Feature-based

Volumetric Terrain Generation. Proceedings of the 21st ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, Article 10, 10:1–10:9 pages. DOI:https:
//doi.org/10.1145/3023368.3023383

Robert Bridson, JimHourihan, andMarcus Nordenstam. 2007. Curl-noise for procedural
fluid flow. ACM Transactions on Graphics (TOG) 26, 3, 46.

Rahul Dey, Jason G. Doig, and Christos Gatzidis. n.d.. Procedural Terrain Generation
with Voxel Grammars. Submitted to Computer Animation and Virtual Worlds (n.d.).

Manuel N Gamito and F KentonMusgrave. 2001. Procedural landscapes with overhangs.
10th Portuguese Computer Graphics Meeting 2, 3.

Sarah Gibson. 1998. Constrained elastic surface nets: Generating smooth surfaces
from binary segmented data. Medical Image Computing and Computer-Assisted
Intervention MICCAI98 (1998), 888–898.

Adrien Peytavie, Eric Galin, Jérôme Grosjean, and Stéphane Mérillou. 2009. Arches: a
Framework for Modeling Complex Terrains. Computer Graphics Forum 28, 2 (Apr
2009), 457–467. DOI:https://doi.org/10.1111/j.1467-8659.2009.01385.x

https://doi.org/10.1145/3023368.3023383
https://doi.org/10.1145/3023368.3023383
https://doi.org/10.1111/j.1467-8659.2009.01385.x

	Abstract
	1 Introduction
	2 Our Approach
	2.1 Overhang Generation
	2.2 Arch Generation
	2.3 Cave Generation

	3 Experimental Results
	4 Acknowledgements
	References

