
Real-Time Integral Photography Using a Game Engine
Shohei Anraku

Kanagawa Institute of Technology
Japan

s1785004@cce.kanagawa-it.ac.jp

Fumihiko Ishiwata
Kanagawa Institute of Technology

Japan
s1323068@cce.kanagawa-it.ac.jp

Nahomi Maki
Kanagawa Institute of Technology

Japan
maki@ic.kanagawa-it.ac.jp

Toshiaki Yamanouchi
Kanagawa Institute of Technology

Japan
yama@ic.kanagawa-it.ac.jp

Kazuhisa Yanaka
Kanagawa Institute of Technology

Japan
yanaka@ic.kanagawa-it.ac.jp

Figure 1: Real-time synthesis of an IP image using a game engine. ©UTJ/UCL.

ABSTRACT
To use the advanced content creation functions of a game engine
and develop contents in which displaying real-time integral pho-
tography images is important, we implemented multi-viewpoint
rendering and IP image synthesis functions by adding a shader and
C# scripts to the game engine.

CCS CONCEPTS
• Hardware→ Displays and imagers;

KEYWORDS
Integral photography, game engine, shader

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’17 Posters, July 30 - August 03, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5015-0/17/07.
https://doi.org/10.1145/3102163.3102187

ACM Reference format:
Shohei Anraku, Fumihiko Ishiwata, Nahomi Maki, Toshiaki Yamanouchi,
and Kazuhisa Yanaka. 2017. Real-Time Integral Photography Using a Game
Engine. In Proceedings of SIGGRAPH ’17 Posters, Los Angeles, CA, USA, July
30 - August 03, 2017, 2 pages.
https://doi.org/10.1145/3102163.3102187

1 INTRODUCTION
Integral photography (IP) [Lippmann 1908] is an excellent 3D image
display method because horizontal and vertical parallax are pro-
duced without the need for wearing stereo glasses. 3D images can
be observed when a special image called an IP image is displayed
on a liquid crystal display (LCD) and observed through a lens ar-
ray called a fly’s eye lens. In the past, an expensive custom-made
fly’s eye lens was necessary. However, this problem was solved by
introducing the extended fractional view method [Yanaka 2008].
Another problem is the difficulty in real-time rendering because
the amount of processing is large. This problem is solved by using a
shader, which is executed in the graphical processing units (GPUs)
[Yanaka and Kimura 2013]. However, it was still difficult to create
high-quality 3D content.

https://doi.org/10.1145/3102163.3102187
https://doi.org/10.1145/3102163.3102187


SIGGRAPH ’17 Posters, July 30 - August 03, 2017, Los Angeles, CA, USA Anraku, Ishiwata, Maki, Yamanouchi, and Yanaka

2 METHOD
Therefore, we introduced a game engine. Synthesis of an IP image
requires rendering a scene from many (e.g., 8 × 8) viewpoints and
combining them into one IP image. Considering that the processing
must be completed within one frame time, a very high processing
capability is necessary. Therefore, we developed a shader for the
game engine.

3 EXPERIMENT
Fig. 1 shows the real-time synthesis of an IP image using the game
engine Unity Ver. 5.6.0 [Technologies 2017]. Using an object with
as few polygons as possible is desirable to obtain a high frame
rate. We constructed a scene by using Japanese Otaku City by
ZENRIN Co. Ltd. [Zenrin 2017], which is licensed under a Creative
Commons Attribution 4.0 International License (CC-BY). For a
character walking around the scene, we used LowPolyUnityChan
[2016], which is distributed by Unity Technologies Japan.

As shown in Fig. 1(a), the camera system that follows the char-
acter is made up of 8 × 8 (total of 64) cameras. Their parent object
(a dummy object) is a sphere that allows all the 64 cameras to trans-
late and rotate simultaneously. The parent object of the sphere is
the character. When the character is moved forward, backward, or
rotated by hitting one of the arrow keys on the keyboard, the 64
cameras follow the character.

The images obtained by the 64 cameras were transferred to a
“render texture,” which is a memory area, whose size is 4096 ×

4096 pixels, and used for the texture mapping of a square plane.
Each camera image was drawn in a different area of the render
texture because different viewports were assigned to each camera,
as shown in Fig. 1 (b).

Considering that a shader was assigned to the plane, an IP image
was created and displayed on the surface of the plane according
to the following procedure. As shown in Fig. 2, the x and y coordi-
nates of an LCD pixel relative to the reference point of the nearest
hexagonal convex lens were calculated. Subsequently, the x and
y coordinates were quantized to eight levels, which served as the
view numbers. Based on the view numbers, one of the 64 square
areas of the render texture was selected, and the corresponding
pixel value was read from the render texture and set to the pixel
of the LCD. The plane was captured by the main camera of Unity,
which was placed just above the plane, and the image was displayed
on the LCD (Diamondcrystal WIDE RDT202WM, 20.1 inch, 1680
× 1050 pixels) of the PC (Intel Core i7-6700 and NVIDIA GeForce
GTX 970).

A 3D image was created when the LCD was observed through a
fly’s eye lens overlaid on the screen. The frame rate was about 4 fps
to 20 fps, and it varied considerably depending on the complexity
of the objects, as shown in Fig. 3.

4 CONCLUSIONS
Using objects with a few polygons to obtain a smooth motion is de-
sirable. If the performance of GPUs improves in the future, previous
restrictions will be eliminated, and high-quality autostereoscopic
3D images will be obtained. By using the method described in this
study, interactive contents, such as games developed by game en-
gines, can be converted easily into autostereoscopic 3D contents

Figure 2: Method of calculating the view number from the
pixel position of the LCD.

Figure 3: Variation of frame rate due to background com-
plexity. ©UTJ/UCL.

by using the IP method. Doing so would result in substantial im-
provement.

ACKNOWLEDGEMENT
This work was supported by KAKENHI Grant Number 16K00284.

REFERENCES
Unity Technologies Japan. 2016. LowPolyUnityChan. http://unity-chan.com/

download/releaseNote.php?id=LowPolyUnityChan&lang=en. (2016).
Gabriel Lippmann. 1908. Epreuves Reversibles Donnant la Sensation du Relief. Journal

of Theoretical and Applied Physics 7, 1 (1908), 821–825. https://doi.org/10.1051/
jphystap:019080070082100

Unity Technologies. 2017. Unity. https://unity3d.com/jp. (2017).
Kazuhisa Yanaka. 2008. Integral photography using hexagonal fly’s eye lens and

fractional view. Proc. SPIE 6803, 68031K–68031K–8. https://doi.org/10.1117/12.
766247

Kazuhisa Yanaka and Sho Kimura. 2013. GPU Accelerated Interactive Integral Pho-
tography System Using Extended Fractional View Method. In ACM SIGGRAPH
2013 Posters (SIGGRAPH ’13). ACM, New York, NY, USA, Article 42, 1 pages.
https://doi.org/10.1145/2503385.2503432

Zenrin 2017. Zenrin Co. Ltd. Japanese Otaku City. http://www.zenrin.co.jp/product/
service/3d/asset. (2017).

http://unity-chan.com/download/releaseNote.php?id=LowPolyUnityChan&lang=en
http://unity-chan.com/download/releaseNote.php?id=LowPolyUnityChan&lang=en
https://doi.org/10.1051/jphystap:019080070082100
https://doi.org/10.1051/jphystap:019080070082100
https://unity3d.com/jp
https://doi.org/10.1117/12.766247
https://doi.org/10.1117/12.766247
https://doi.org/10.1145/2503385.2503432
http://www.zenrin.co.jp/product/service/3d/asset
http://www.zenrin.co.jp/product/service/3d/asset

	Abstract
	1 Introduction
	2 Method
	3 Experiment
	4 Conclusions
	References

