
Velocity-based Compression of 3D Animated Rotations
David Goodhue

Square Enix Co., LTD
6-27-30 Shinjuku, Shinjuku-ku

Tokyo, Japan 160-8430

Figure 1: Two-dimensional example depicting the relationship between angular velocity and rotation keyframes.

ABSTRACT
Modern video game engines feature animation compression built
using algorithms which offer fast runtime decompression. In com-
parison to other state-of-the-art industry techniques, we present
new methods by which better compression ratios can be realized
without significantly impacting performance.

We first present a technique for reconstructing a stream of
sparsely-keyed rotations from a sequence of angular velocities.
Next, we encode those velocities as consecutive deltas, making it
possible to use much smaller key sizes. As a final enhancement, we
allow the speed component of our angular velocity to in some cases
receive influence from velocity keys which do not specify an axis
of rotation. Instead, the axis remains unchanged from the previous
frame's velocity, yielding smaller data on those frames.

CCS CONCEPTS
• Computing methodologies→ Animation;

KEYWORDS
animation, compression, video games

ACM Reference format:
David Goodhue. 2017. Velocity-based Compression of 3D Animated Rota-
tions. In Proceedings of SIGGRAPH 2017 Posters, Los Angeles, CA, USA, August
2017, 2 pages.
https://doi.org/10.1145/3102163.3102236

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH 2017 Posters, August 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5015-0/17/07. . . $15.00
https://doi.org/10.1145/3102163.3102236

1 PREVIOUS WORK
Most compression techniques published in academic journals fail
to address the CPU performance needs of video game production.
Popular techniques in the industry tend to be spline-based [Akhter
et al. 2012], or for even better CPU performance as with our method,
keyframe-based. That is to say, an encoding wherein the rotation
at any point in time results from an interpolation between the two
rotation keyframes bounding it on either side timewise within a se-
quence of time/value key pairs. Unlike some cutting-edge keyframe-
based techniques [Frechette 2017], to further reduce unnecessary
key data, like many others, we use sparsely distributed keyframes
rather than keep constant intervals between adjacent keys. In this
report, we are pleased to show significant advances over our pre-
vious top proprietary technology, which was also keyframe-based
and which offered similar compression ratios to those techniques
referenced above along with very fast CPU performance.

2 INTRODUCTION
Velocity-based compression is an extension of conventional key-
frame-based compression. For a typical dataset, in contrast, this
approach can yield significantly smaller data, eliminating the need
for per-track or per-section rotation ranges as well as the need for
time/frame data to exist for each keyframe. It is also key-reducible
and as such is similarly easy to configure. It preserves the afore-
mentioned benefits of keyframe-based methods and adds more of
its own, but not without some drawbacks.

3 TERMINOLOGY
In conventional keyframe-based compression, each key value is
approximately equal to the desired animated result at the corre-
sponding time. Using these new approaches, that is not necessarily
the case, and keys are generally only used to compute future results.
To differentiate from keys, we shall refer to animated results for
which specific keys exist as ”keyed results".

https://doi.org/10.1145/3102163.3102236
https://doi.org/10.1145/3102163.3102236

SIGGRAPH 2017 Posters, August 2017, Los Angeles, CA, USA D. Goodhue

4 VELOCITY-DRIVEN KEYFRAMES
As can be seen in Fig. 1, a single constant angular velocity exists
which can transform between every pair of subsequent keyed re-
sults in an animated rotation track. While preserving its axis of
rotation, scaling the angular component within the velocity by the
time lapse between the two results yields a rotational difference
which, when applied to the previous keyed result, will yield the
expected value for the next result. Key values under this scheme
are the velocities which exist from each keyed result to the next.
Intermediate results at any other time are computed in an identical
manner; which is to say, by taking the velocity key from the time of
the previous keyed result, scaling the velocity angle by time elapsed
since then to get a delta rotation, and applying that rotation to the
previous keyed result.

Since no result can be computed without the presence of a pre-
vious result, an initial set of results, or seed frame, must exist at
time==0.0 as input to this algorithm. Data must be traversed se-
quentially from that point forth to yield results for later times, so
for practical purposes in video games where high-performance is
required, additional seed frames may need to be inserted into spe-
cific chunks for animations which wish to begin playback at later
times. While that is an unfortunate drawback, there are benefits to
doing this as well.

Making the techniques in the following sections possible is prob-
ably the largest benefit of velocity-driven keyframes, however an-
other of significance is that, in contrast to conventional keyframe
compression, it eliminates the need for a time value to be associated
with each key. Those systems interpolate between previous and
future keys, so a key time needs to be read from data whenever
a new key is encountered. With our method however, there is no
future time involved, just the velocity and the previous key. Velocity
keys correspond to the frame upon which they are encountered in
the data stream, with no additional time data required.

5 VELOCITY KEYS ENCODED AS DELTAS
Rather than pack velocity values as our keys as described above, it is
also possible to just store the delta rotation between one velocity key
and the next. While it is still a reasonable solution to have rotation
animation driven by velocity keys directly, the advantage to using
deltas instead is that, for typical character animation data, they
will almost all fit into an extremely small range centered around
zero. The most advanced forms of conventional keyframe-based
compression achieve rotational range reduction by encoding data to
tag individual sections of individual channels with various ranges,
including both the range center and the range size. However, by
using velocity deltas and a range center of zero, just a single range
size for all channels and all sections even will still yield excellent
results. The downside is that some small number of keys may not fit
within the range, so a means for loading those as packed velocities
rather than deltas, and with no range restriction, is needed as well.

6 AXIS-FREE VELOCITY KEYS
In section 4 we discussed decomposing velocities into axis and angle
components, then scaling each angle by elapsed time to attain the
corresponding rotational difference to be applied to the previous

keyframe's pose value. While there are many different and inter-
esting ways mathematically and programmatically to implement
that, the best among them all seem to deal with the angle, or in
other words the rotational speed, at some point as an individual
float value. Therefore it follows that we can place velocity keys
into our data stream which modify the speed while leaving the
axis of rotation as it was from the previous velocity. Of course,
this should only be done on frames where the desired axis is close
enough to that of the current velocity to the extent that a speed
correction alone will keep our results within our error tolerance. If
packing the new speed as a delta from the previous within some
restricted range, a single byte is often sufficient. However, just like
our deltas from the previous section, in the rare case that a key
must exceed the restricted range, an alternative larger and unre-
stricted key value must be available. This is especially powerful for
compressing animation where bones frequently rotate around a
largely stable axis such as rotors or wheels. We experienced massive
data shrinkage on such clips, with many keys going from 32-bits
or higher under conventional methods down to just 8-bits using
velocity speed deltas.

7 CONCLUSIONS
The techniques presented expose many new possibilities for ad-
vancements in keyframe-based animation compression. The imple-
mentation however is non-trivial and much less straightforward
than conventional techniques. Additionally, clever architecture is
needed for it to decode competitively fast. For large teams with
enough resources to fully refine these technologies, it seems worth
the additional work, with any downsides being entirely manageable.

Despite using only a prototype key reduction algorithm at the
moment which does not compute an ideally minimal set of keys,
the compressed data tends to be about 65% smaller than it would
be using our previous top compression technology, or in some
cases even far smaller than that. Those numbers will improve once
we create a more sophisticated key reduction algorithm which
specifically targets this data format. We speculate that if one were
to combine maximally aggressive quantization [Frechette 2017]
with an optimal set of sparse keyframe data, that result would
likely prove more competitive than our previous top technology
here, but we have not built or even managed to identify such an
implementation to compare to as of yet.

8 FUTUREWORK
We plan to implement similar velocity-based techniques for trans-
lation and scale keys as well. Furthermore, it could have uses in
graphics or elsewhere, such as for compressing a traversal of con-
secutive surface normals.

REFERENCES
Ijaz Akhter, Tomas Simon, Sohaib Khan, IainMatthews, and Yaser Sheikh. 2012. Bilinear

Spatiotemporal Basis Models. ACM Trans. Graph. 31, 2, Article 17 (April 2012),
12 pages. https://doi.org/10.1145/2159516.2159523

Nicholas Frechette. 2017. Animation Compression: Advanced Quantization. (March
2017). Retrieved from http://nfrechette.github.io/2017/03/12/anim_compression_
advanced_quantization/.

https://doi.org/10.1145/2159516.2159523
http://nfrechette.github.io/2017/03/12/anim_compression_advanced_quantization/
http://nfrechette.github.io/2017/03/12/anim_compression_advanced_quantization/

	Abstract
	1 Previous Work
	2 Introduction
	3 Terminology
	4 Velocity-driven Keyframes
	5 Velocity Keys Encoded as Deltas
	6 Axis-free Velocity Keys
	7 Conclusions
	8 Future Work
	References

