
rpTextures: Systematic Layering for Large Texture Generation
Austin E. MacKay
Taylor University

austin_mackay@taylor.edu

Jonathan D. Denning
Taylor University

jon.denning@taylor.edu

Figure 1: (left) Mossy stone brick texture, generated from eight layers, has a period of 2432×2432. The largest layer is 128×128.
(middle) All eight layers packed into a single 320×128 graphic texture (borders added to show individual layers). (right) Tiled
layers of sizes 5×5 (red), 7×7 (green), and 11×11 (blue) generate a texture with a period of 5·7·11=385 in width and height.

ABSTRACT
We use systematic layering of variously sized layers to quickly
create large, seemingly non-repeating textures. This leads to signif-
icantly more control for artists to create expansive visual scenes
without the need for large teams to create massive textures. Our
method maintains the visual appeal of seamless and non-repeating
design, while using little memory and rendering quickly.

CCS CONCEPTS
• Computing methodologies → Texturing; Image compression;
Rendering; Image processing;

KEYWORDS
Art and Design, Image, Research
ACM Reference format:
Austin E. MacKay and Jonathan D. Denning. 2017. rpTextures: Systematic
Layering for Large Texture Generation. In Proceedings of SIGGRAPH 2017
Poster, Los Angeles, CA, USA, August 2017, 2 pages.
https://doi.org/10.1145/3102163.3102219

1 INTRODUCTION
Compelling video game textures are difficult to create. Small, tiled
textures are quick to produce and render, but the repeated appear-
ance can remove the player from their immersion experience. As
game worlds become larger and often more realistic, the textures
need to grow in resolution and fidelity to compensate. Currently
textures are created by methods of generating filtered noise or by
having an artist go through and paint every pixel. Painting large
textures is time consuming, requires nontrivial compression, and
novel texture management systems. Methods for more automated

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH 2017 Poster, August 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5015-0/17/07. . . $15.00
https://doi.org/10.1145/3102163.3102219

Figure 2: Example textures: water, grass, gravel, stone, wood
planks, parking lot, brick wall, tree bark.

texture generation include filtering blue noise [Stam 1997], aperi-
odic tiling [Parzer 2013], and texture compression (epitome) [Wang
et al. 2008], but these methods are difficult to generalize across a
variety of categories of texture structures.

We present a method of creating large-scale, seamless, and com-
plex textures that is artist friendly (painted using conventional
methods) and generalizes across texture categories. Our method
involves a systematic layering of variously-sized textures which bal-
ances randomization and easy customization, and is fast to render.
We also report on the useful design principles. Our work extends
and formalizes the work of Alex Walker [2011].

2 TECHNICAL DETAILS AND
IMPLEMENTATION

Repetitious textures have visual features that appear periodically.
A tiled texture has a fixed period based on its size. The key insight
to our work is in creating layers of different sizes that repeat at
different periods. By choosing the sizes of the layers, we can control
the effect of repeating to generate noisy textures (e.g., grass, dirt,
sand) or structures textures (e.g., brick, tiles). The final texture
repeats at a size that is the least common multiple of the layer
sizes. Choosing layer sizes that are relatively prime will result
with the texture repeating only at the product of the sizes. The
size of the non-repeated texture grows roughly exponentially with
the number of layers. For example, layers of widths 5, 7, and 11
will generate a non-repeating texture of width 385 (fig. 1). Adding

https://doi.org/10.1145/3102163.3102219
https://doi.org/10.1145/3102163.3102219

SIGGRAPH 2017 Poster, August 2017, Los Angeles, CA, USA MacKay and Denning

Figure 3: Large 3D scene using rpTextures (left) and 16×16 tiled textures (right). Although the textures in both images are
scaled the same, rpTextures avoid the repetition seen using tiled textures.

a fourth layer of width 13 increases generated texture width to
5005. Prime sizes are ideal for generating textures with very little
structure. To generate structured textures, we chose sizes that have
a greatest common divisor proportional to the size of the intended
structure. For example, a brick 8 pixels wide would use layers
of width 5·8=40, 7·8=56, and 11·8=88 generates a texture of width
3080. Adding a fourth layer of width 13·8=104 generates a texture of
width 40040. Using layers with sizes that are multiples of relatively
prime numbers, artists can create massive, random textures using
conventional methods.

We created a prototype web application usingWebGL to test how
expressive our method is for creating textures. The shader produces
the final color by covering or adjusting HSV values for each layer
sampled at the texture coordinate mod the layers size. The web-
based editor is accessible at gfx.cse.taylor.edu/projects/rptextures.
An artist created textures from many different categories, such as
grass, dirt, bricks, and stone (fig. 2).

3 CURRENT AND FUTUREWORK
We present a range of low-resolution texture types and discuss
design principles and strategies for creating rpTextures for video
games. For future work, we plan to run studies to determine gen-
eral rules for creating textures that avoid repetition, and we plan to
compare the performance of our method against methods common
in industry. Currently, we focus on using textures for diffuse reflec-
tion of surface. We believe this work can easily extend to control
other surface properties, such as specularity, emission, normal per-
turbation, and displacement. We believe that this can also extend
this method to other domains, such as audio.

REFERENCES
S. Parzer. 2013. Irrational Image Generator. Master’s thesis. Vienna University of

Technology, Vienna.
Jos Stam. 1997. Aperiodic texture mapping. European Research Consortium for Infor-

matics and Mathematics.
A. Walker. 2011. www.sitepoint.com/the-cicada-principle-and-why-it-matters-to-web-

designers/. (2011). Accessed: 2017-06-21.
Huamin Wang, Yonatan Wexler, Eyal Ofek, and Hugues Hoppe. 2008. Factoring

repeated content within and among images. ACM Transactions on Graphics (TOG)
27, 3 (2008), 14.

https://gfx.cse.taylor.edu/projects/rptextures
http://www.sitepoint.com/the-cicada-principle-and-why-it-matters-to-web-designers/
http://www.sitepoint.com/the-cicada-principle-and-why-it-matters-to-web-designers/

	Abstract
	1 Introduction
	2 Technical Details and Implementation
	3 Current and Future Work
	References

