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1 Introduction

Distributing a simulation over multiple computers enables simu-
lations that exceed the capacity of any individual machine. Dis-
tributed systems, however, tend to be hard to deploy and maintain.
Our approach can work with commodity hardware and is agnostic
to the specific type of simulation. Users have successfully deployed
on a variety of hardware over many years and accelerated a wide
variety of types of simulations.

2 Spatial Distribution

The faster turn around times from distribution are coupled with de-
creased efficiency. The main drive for distributed simulations was
to be able to complete simulations that were otherwise impossible
due to total resource requirements. To break a problem up, we di-
vide space into slices, one per machine. Each machine only has
knowledge of the simulation data in their slice and a thin bound-
ary around it. Because communication bandwidth is proportional
to the area of the slice boundary, it is important to minimize the
slice area to volume ratio. We divide volume grids uniformly and
divide particle simulations by artist placed cutting planes.

Houdini’s simulations rely on operator splitting to give artists con-
trol over their look and behaviour. We have observed that almost all
user-created operations, such as novel forces, diffusions, and meta-
morphoses, require only local knowledge of the simulation.
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For each operator, we can consider the distance its effect will be
felt within a single substep. Provided this is less than the bound-
ary width, no special distribution code is required for the opera-
tor. Inter-particle forces in an SPH-simulation, for example, are
bounded by the kernel size, so can be computed in a naive fash-
ion. Advection of a Eulerian grid, likewise, can be performed if the
maximum boundary velocity does not cause motion farther than the
boundary width. A five voxel boundary, for example, can support a
CFL of five for the advection step.

When combining operators, the maximum influence is bounded by
the sum of the individual distances. In practice we have not had to
strictly follow this bound. Some operations work on different pa-
rameters, so are independent. And most operations have a rapidly
decaying influence, so while convolving the influence function will
grow the support, truncating the tail usually introduces minimal er-
ror. This can be likened to the truncated support used for Blinn
metaballs.

3 Tracking

To ensure we could handle simulations too big for any one com-
puter, we avoided having any machine be in charge of the entire
simulation. Instead, each machine runs its own full, independent,
session of Houdini, focused on its own slice of space, and only is
aware of the distributed nature of its simulation when certain oper-
ators are run.

We do need a way for these machines to find each other, however.
This is complicated because we need to run within third party ren-
derfarms, where we have no control on machine assignment. Each
machine is only provided a single address and port: that of a tracker.
The tracker’s job is to accept sync requests from each slice ma-
chine. When all the slices have reported in, it can send back to all
of them their respective addresses and communication ports. The
slice machines are then able to open direct peer-to-peer communi-
cation with each other. We thus allow full efficiency on switched
networks by avoiding a centralized data exchange. When machines
complete their exchange they report back to the tracker. Once all
machines have checked in, a final message is sent from the tracker
to release the machines from their synchronization point. While this
final stall is not strictly required for all synchronization processes,
reasoning about distributed systems is sufficiently complex. Hence,
we elected for reliability and reproducibility over pure efficiency.
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3.1 Networking

Without control of the installed network stack, we had a choice of
TCP, UDP, or a higher level protocol built on top of those systems.

Unlike realtime applications, our synchronization stages cannot ac-
cept missing packets or re-ordered packets, as we wish to produce
deterministic results. Since building on top of UDP would require
re-inventing TCP’s reliability guarantees, we concluded the base
layer should be TCP.

We abstracted this layer by building a class to handle a synchro-
nization event. Each event builds its own class, causing each syn-
chronization to reconnect to the tracker to discover ports and syn-
chronize. Since distribution is applied when simulations are already
large in size, this overhead is not significant. Also, since each syn-
chronization is reported by name to the tracker, the tracker is able
to produce a human readable state of the simulation. This makes
it easy to detect split-brain problems, such as two machines decid-
ing to take different substeps, without the use of a C++ or network
debugger.

4 Common Synchronization Points

Please refer to the supplementary materials for more detailed anal-
ysis of our synchronization methods and pressure projection.

5 Results

Our framework has allowed us to distribute smoke, fire, water,
and sand simulations using PLS, SPH, FLIP, PBD, and multigrid
solvers. Spatial division and boundary exchange can form a kernel
that allows easy distribution of many effects without coupling the
distribution system with the solving system.

By distributing we gain not only speed, but the ability to break
hard limitations of individual machines. We are able to run GPU-
based OpenCL simulations on four separate video cards that would
have exhausted the memory of a single card. Similarly, with CPU-
based simulations we can fuse the memory of multiple machines
to avoid swapping, allowing the simulation to complete in a practi-
cal amount of time. We are also able to simulate over four billion
points in a FLIP simulation without encountering any 32-bit index
limits as no individual machine had to see all of the particles.

Table 1: Performance; per-frame times

Test Single Distribute Speed Up

PBD Sand, 9.8MPart, 6 slices 1072s 195s 5.5x
FLIP, 184MPart, 4 slices 180.5s 56.1s 3.2x

PLS, 4003, 4 slices 469s 142s 3.3x
Explosion, 269MVoxel, 4 slices 168s 95s 1.8x

Position based sand uses particle exchange every substep along the
boundary. Because we use Jacobi iterations, each iteration’s in-
fluence is bounded by the particle radius. Further, if the mass is
uniform across the slice boundary, while the influence boundary
grows with every iteration, its effect swiftly falls off. This com-
mon downside to explicit smoothing becomes for us a virtue. The
PBD simulation also uses automatically varying slice positions to
balance the work load, quite important as the pile of sand swiftly
has a very uneven distribution.

The FLIP simulation is a tank simulation cut into four equal pieces.
Since global pressure projection is properly distributed, the key is
to have a boundary sufficient to cover the advection stage.

The particle level set simulation is a half-full tank. It uses the global
distributed pressure projection and thus, like FLIP, has its boundary
determined by the advection stage.

The explosion is a multigrid IOP simulation split equally into four
along the X and Z axes (with Y up). The grid is resizing, how-
ever, requiring considerable data to be transferred between ma-
chines as ownership of voxels changes hands. The multigrid solve
is not distributed; instead, each slice naively solves its own segment
with closed boundary conditions on its neighbour. This provides a
frame-delayed boundary condition that produces visually plausible
results but differs noticeably from the undistributed simulation.
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