
OpenMfx: An API for cross-software non-destructible mesh
effects
Élie Michel

LTCI, Télécom Paris, Institut Polytechnique de Paris

Palaiseau, France

elie.michel@telecom-paris.fr

OpenMfx

ExtrudeBevel Intersect

Host So�ware

OpenMFX Plug-in
OpenMFX API

Cross-so�ware Effect

Op�onal OpenMFX SDK

Figure 1: An example of sequence of non-destructive effects transforming a simple editable base mesh (e.g. a cube) into a

more complex asset. Operations like bevel, extrusion or boolean intersection are available in most of common mesh-based

3D modeling suites, but the effect applied at the second step is less common. By implementing it as an OpenMfx plug-in, it is

available in any supporting host software and thus the asset is interexchangable in its non-destructive form.

CCS CONCEPTS

• Computing methodologies → Graphics file formats; Mesh

geometry models; • Software and its engineering→ API lan-

guages.

KEYWORDS

Interoperability, Mesh Modeling, Open Source, Plug-in API

ACM Reference Format:

Élie Michel. 2021. OpenMfx: An API for cross-software non-destructible

mesh effects. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Posters (SIGGRAPH ’21 Posters), August 09-13, 2021.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3450618.3469168

1 INTRODUCTION

Non-destructive operations are widely used in mesh-based 3D mod-

eling to add procedural effects on top a coarse geometry while

allowing it to remain editable. Common such operations include

surface subdivision, beveling, repetition, boolean operations. Com-

bined together as a stack or even as a direct acyclic graph, they

are a very powerful tool to build parametric assets. Although this

mechanism is present in many different 3D modeling suites (Maya,

Houdini, Blender, Cinema4D, 3ds Max, etc.), it is not easy to share a

parametric asset across them. Indeed, they do not all implement the

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGGRAPH ’21 Posters, August 09-13, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8371-4/21/08.

https://doi.org/10.1145/3450618.3469168

exact same set of operations, and even when they do, there might

be slight discrepancies in their behavior. We designed a plug-in API

that enables one to have all supporting 3D modeling suites share

the same implementation of a given non-destructive effect. It thus

becomes possible to share scenes featuring non-destructive effect

without having to destructively bake them.

2 TECHNICAL APPROACH

We build on top of OpenFX [Association 2006], an industry standard

plug-in API that has been developed by Foundry while facing a

very similar problem in the field of compositing, which is nothing

else than non-destructive image editing. OpenFX has been designed

from the ground upwithmodularity inmind sowewere able to fully

reuse its core, including the base plug-in mechanism and the API

for setting effects’ parameters. Our mesh effect API is introduced

as an extension next to its image effect API. In the end, most of

the decisions we have made were related to the representation of

meshes that transits through the API.

This representation aims at supporting a wide variety of mesh

topology, including n-gons of arbitrary point count, unconnected

points (for point clouds), loose edges (for wireframe meshes) and

mixes of all of these. It aims at a minimal enough memory footprint,

meaning that the representation should be non-redundant and also

that it should be able to point to wherever the data already is in the

host’s memory rather than copying it, if possible. And it aims at a

simple design, to avoid dealing with multiple particular cases.

Attributes. An OpenMfx mesh is then simply a list of attribute

buffers. A given attribute is relative to either points, faces or face cor-

ners and contains between 1 and 4 values of a given type (short, int

or float) for each point/face/corner. For instance the vertex positions

https://doi.org/10.1145/3450618.3469168
https://doi.org/10.1145/3450618.3469168


SIGGRAPH ’21 Posters, August 09-13, 2021, Virtual Event, USA Michel, É.

are given by a 3-component float point attribute. The connectivity

information makes no exception, it is given by attributes, namely an

integer face attribute telling for each face its number of corners and

an integer corner attribute telling for each corner the index of the

point it refers to. These are equivalent to what USD’s UsdGeomMesh
class calls resp. faceVertexIndices and faceVertexCounts, and
is also close to Blender’s and Houdini’s representations

1
.

Note that we decided not provide edge attributes. Edges that

belong to no face, called "lose edges" are listed as two-point faces,

other edges are omitted because implicitly defined by faces. Since

edges are shared across faces, the price in clarity to include edge at-

tributes was too important compared to the fact that many existing

API don’t support them anyways.

Attribute buffers are of two kinds. Some own their data, which is

freed when the mesh is released. Others are non-owner attributes,

meaning that they point to an existing memory location, that is

assumed to remain valid throughout the execution of the effect.

The memory layout is described by a flexible buffer protocol, loosely
inspired by Python’s [Python [n.d.]], such that the host can use

non-owner attributes as much as possible to feed mesh attributes

to the effect. Only attributes whose layout on host side cannot fit

the buffer protocol need to be copied. Non-owner attributes can

also be used in outputs, for instance to forward unchanged input

attributes without copying them at all.

On-demand data. To alleviate further the need for memory trans-

fers, an effect must explicitly request the attributes it needs. A

requested attribute is assigned a semantic flag hinting about the

meaning of the attribute (color, normal, texture coordinate, weight)

and that the host may use to suggest the user which host-side

attribute to feed as the requested one.

Another information that is provided only on demand is the

world to local transform matrix associated to the mesh. It is not

available unless requested, such that the host’s dependency graph

can more finely avoid useless executions or dependency loops.

Specific Scenarios. While aiming at flexibility, it was also impor-

tant to ensure that some more specific yet very common cases are

efficiently handled. Often the number of points per face is fixed.

It might be to 3 (triangle only meshes), 4 (quad only), but also 2

(wireframe only). In such a case, a flag is used to avoid allocating a

face point count buffer that would be uniform.

Attribute forwarding is already a good way to avoid unneeded

copies of memory, but for the host’s internal it might be useful

to know even before running the effect that it will not change

the connectivity of the mesh (e.g. a displacement effect). So called

"deform only" effects can advertise this fact ahead of execution (at

describe time) so that the host may handle them differently.

Limitations. Besides the aforementioned absence of explicit edge

attributes, two features have been set aside compared to Maya’s

API. First OpenMfx does not allow faces with holes, i.e. faces that

would be made of more than one loop of edges. This would abu-

sively complicate the task of plugin writers while use cases are very

uncommon. Secondly, there is no indirection between face corners

and texture coordinate, so no proper definition of "UV island".

1
Houdini calls "vertex" what we call "corner", but "vertex" used by Blender to mean

what we and Houdini call "point", we settled on the less ambiguous term "corner".

3 FUTURE PROSPECTS

Currently, the OpenMfx API is getting stable and documented,

one host is supported (a branch of Blender [Michel 2019b]) and

another one (in Unity) is at the stage of proof of concept. Several

effect packages are available, likeMfxVCG [Michel 2019a] providing

effects fromMeshLab’s VCGlib [Cignoni 2008] orMfxVTK [Karabela

2020] providing effects from the Visualization Toolkit[Schroeder
et al. 2006]. The ecosystem may still get improvements in order to

ease its adoption. The current major limitation is lack of supporting

hosts besides Blender and Unity, so we are working on a SDK

similar to the one we have built to ease the creation of plug-ins

but oriented towards the integration into new hosts. The Unity

host is still limited at this stage as we have not defined a proper

dependency graph yet.

In order to ensure harmonization among multiple implementa-

tions – which is sometimes a problem of OpenFX – we plan on

providing an optional validation layer, reporting any inconsisten-

cies in the use of the API. This will come with an overhead but

would be used only at development time.

To meet our original goal of bringing the possibility to share

scenes that have non-destructive effects and parametric shapes

across software suites, we will integrate an USD schema [Studios

2016] telling which plug-in to instantiate where and with which

parameters when exchanging a scene. Effect parameters would be

driven by UsdAttribute and input mesh would be provided as

UsdRelationship. The effect could request from their input the

extra attributes provided through the UsdGeomPrimvarsAPI.
So far we have focused on time independent effects, but the

original OpenFX API also supports time-dependent effects such as

simulations, so by reusing their industry tested approach we could

also support it for 3D meshes even though it may raise questions

that are not our priority at the moment.

There is room in the design for augmenting the effects with

new actions without breaking compatibility. A promising example

would be to add the possibility to query the effect for differential

information, e.g. to measure jacobian of the operation, to make it us-

able in contexts such as machine learning, differentiable rendering

or inverse control [Michel and Boubekeur 2021].

ACKNOWLEDGMENTS

We would like to thank Tomáš Karabela for the insightful discus-

sions we had to shape this API and arbitrate between design choices.

REFERENCES

The OpenFX Association. 2006. OpenFX. https://openfx.readthedocs.io

Paolo et al. Cignoni. 2008. MeshLab: an Open-Source Mesh Processing Tool. In Euro-
graphics Italian Chapter Conference, Vittorio Scarano, Rosario De Chiara, and Ugo

Erra (Eds.). The Eurographics Association.

Tomas Karabela. 2020. MfxVTK: An OpenMfx plug-in based on the Visualization Toolkit
(VTK). https://github.com/tkarabela/MfxVTK

Élie Michel. 2019a. MfxVCG: An OpenMfx plug-in based on VCGlib. https://github.

com/eliemichel/MfxVCG

Élie Michel. 2019b. OpenMfx for Blender. https://github.com/eliemichel/

OpenMeshEffectForBlender

Elie Michel and Tamy Boubekeur. 2021. DAG Amendment for Inverse Control of

Parametric Shapes. ACM Transactions on Graphics 40, 4 (2021), 173:1–173:14.
Python. [n.d.]. Python’s Buffer Protocole. https://docs.python.org/3/c-api/buffer.html

Will J Schroeder, Ken Martin, and Bill Lorensen. 2006. The Visualization Toolkit (4th
ed.). Kitware.

Pixar Animation Studios. 2016. Universal Scene Description. https://graphics.pixar.

com/usd

https://openfx.readthedocs.io
https://github.com/tkarabela/MfxVTK
https://github.com/eliemichel/MfxVCG
https://github.com/eliemichel/MfxVCG
https://github.com/eliemichel/OpenMeshEffectForBlender
https://github.com/eliemichel/OpenMeshEffectForBlender
https://docs.python.org/3/c-api/buffer.html
https://graphics.pixar.com/usd
https://graphics.pixar.com/usd

	1 Introduction
	2 Technical approach
	3 Future prospects
	Acknowledgments
	References

