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ABSTRACT
We present a novel method to segment CAD models into devel-
opable patches by detecting curve-like features on Gauss images
of the corresponding patches. A region-growing approach is em-
ployed to detect planar and curved developable patches. The Gauss
image of each segmented patch is constrained to be curve-like via
principal component analysis and Pearson correlation analysis. Ex-
perimental results demonstrate that our approach generates nice
results on CAD models with all kinds of developable surfaces.
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1 INTRODUCTION
Developable surfaces are widely used in industrial manufacturing
and architectural modeling. Current methods for developable sur-
faces design generally require a clean segmentation setup which
segments a mesh into developable strips and planes [Solomon et al.
2012; Tang et al. 2016], such as a segmentation in Fig. 1.

Existing approaches for developable segmentation cannot guar-
antee a nice result on CAD models. Julius et al. [2005] segment the
mesh by detecting a subclass of developable surfaces. [Yamauchi
et al. 2005] generate disk-like patches, but non-disk patches such as
cylinders appear in CAD models quite often. Sharp creases in CAD
models can also be a problem in recent research[Ion et al. 2020].

In this poster, we propose a novel method for extracting devel-
opable patches from CAD models by detecting curve-like features
on Gauss images of each patch. The advantege of having curve-like
Gauss image on each patch is that the patch can be fitted by a
developable strip, which can be used in downstream applications
directly. An example of our approach is shown in Fig. 1.

2 PRELIMINARIES
Smooth developable surfaces. Differential geometry offers pro-

found insights into the nature of smooth developable surfaces.
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Figure 1: Left: Our result on bridge model and its Gauss im-
age. Themodel is segmented into seven developable patches
which include a yellow plane triangle at top and six devel-
opable strips. Right: Our result on oloidmodel and its Gauss
image. The model has one developable surface.

Smooth developable surfaces are locally isometric to planes, such
isometry can be characterized by vanishing Gaussian curvature
at all points. This definition is advantageous to recognizing a de-
velopable surface rather than generating one. An efficient way to
generate developable surfaces is to draw them as torsal ruled sur-
faces. A torsal ruled surface S can be parameterized by S(u,v) =
λ(u) + vγ (u), (λ′(u) × γ (u)) · γ ′(u) = 0, where λ(u) is a curve in
R3 called directrix, γ (u) is a nonvanishing vector field along λ(u)
specifying the direction of rulings, and the equation on the right
constrains Gaussian curvature to be zero. Furthermore, the normals
of the torsal ruled surface is given by n(u) =

λ′(u)×γ (u)
∥λ′(u)×γ (u) ∥ . Since

n(u) is single parameterized, it forms a single curve in the sphere.

Gauss map of triangle meshes. Given a triangle meshM = {V , F }
with vertice set V and face set F , the Gaussian map G of M maps
each face fi to face normal ni . The Gauss image for M is N =
{ni |i = 1 . . .m}. Our goal is to find curve-like point clouds from N .

Linearity. To find curve-like point clouds, we measure the linear-
ity locally. In statistics, the Pearson correlation coefficient measures
the linear correlation between two sets of data. [Lee 2000] use this
coefficient to measure the linearity of a point set in R3. For a point
set N , map it to 2d plane such that the principle direction of the
result point set P coincides with the identity line, then the Pearson
correlation coefficient of P measures the linearity L(N ) of N . If N
forms a line, L(N ) would be close to 1. If N is distributed randomly,
L(N ) would be close to 0.

3 METHODOLOGY
Our algorithm processes regular triangle or quadrilateral meshs.
The workflow is shown in Fig. 2. We use a region-growing method
to detect planes and developable patches. A seed face used for
growing is chosen from regions as flat as possible. During growing
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iteration, we constrain the neighbor of each face in the patch has
a curve-like Gauss image. We say a face fj ∈ F belongs to the
i-neighbor U i

k of fk ∈ F if there exists at most i + 1 faces f 1 =

fk , f 2, . . . , f i+1 = fj in F such that f l and f l+1 (l = 1 . . . i) have
commn edges. The principle value and principle direction of a
face set Ik is the maximum principle value and the coresponding
principle vector of {nj − n̄k |nj ∈ G(Ik )}, n̄k is the mass center of
G(Ik ). The principle direction and the principle value of a face fk
is the principle direction and the principle value ofU 2

k .

Figure 2: Workflow of our algorithm. Left: plane detection
with ap = 0.001; Middle: developable surface segmentation
with L = 0.94,C = 0.9 generates 19 patches; Right: segmenta-
tion clean generates 10 patches.

Plane Detection. Our method first detects planar rigionsMp of
M . Faces with priciple values less than ap can be used as seeds. We
grow a seed fk by iteratively adding neighbor faces into segments
Ik and constraining the principle value of G(Ik ) to be less than ap .

Developable Surface Sgmentation. This stage detects non-planar
developable pieces of M \Mp . The seed face set Sk = { fk , f1, f2}
in this step is given by the face fk with minimum principle value
and f1, f2 are chosen fromU 1

k such that the principle direction of
Sk is closest to the principle direction of fk . During the growing
process, we constrain the linearity lj = L(G(U 2

fj
∩ Sk )) and tangent

direction consistency c j to be less than L and C respectively for
each candidate face fj . To guarantee G(Sk ) can be approximated
by a curve without branch road, we compute the tangent direction
consistency c j = maxtl ∈Tj |tl · tj |, where Tj is the set of principle
directions for faces inU 2

l ∩ Sk and tj is the principle direction of fj .

Segmentation Clean. Our algorithm may produce small patches
due to noise on the mesh or improper custom parameter choice (see
figure2 middle). We clean these small patches by deleting patches
with face number small than s and grow remaining patches with re-
laxed prarameters ap , L andC . Both L andC disallow rapid changes
on the normal of a small region. In order to group the equator side
of the gears model together, L and C need to be reduced to 0.6.

4 EXPERIMENTAL RESULTS
To find appropriate L andC , we segment gears model using different
parameters. See table 1 for the number of segment patches. When
C is larger than 0.99, L hardly effects the result. WhenC is reduced
to 0.8, our algorithm starts to group side faces into one patch and
generate small patches along the gear corner. When C is between
0.94 and 0.9, the behavior of our algoritm is more predictable since
patch number will reduce as L reduce. When L is between 0.8 to
0.94, the results are cleaner. Thus L and C can be chosen between
[0.8, 0.94] and [0.94, 0.9] respectively. All results generated within
this range will be cleaned into 10 patches after segmentation clean.

Table 1: patch number of developable surface segmentation
for gears model using different parameters

C=0.99 C=0.94 C=0.9 C=0.8
L=0.99 103 64 59 60
L=0.94 101 64 19 12
L=0.9 101 33 18 20
L=0.8 101 33 17 18

Our method generates promising results for CAD models (see
Fig. 3). In these examples, ap is set to 0.001 for plane detection. Both
L and C is set to 0.9 for developable surface detection. During the
clean process, ap is relaxed to 0.02, L andC is relaxed to 0.7. Notice
that a developable patch will not expand into non-developable
patch. The shape of the green patch in the first modle in Fig. 3 is
like part of a bending tube, which is non-developable, and it will not
be merged with neighboring developable patches. Our algorithm
also works on developable surfaces that are not uni-axial conics
such as oloids in Fig. 1 on the right.

Figure 3: More results of our proposed method.

5 CONCLUSION AND FUTUREWORK
We propose an efficient method to segment CAD models into devel-
opable surfaces. Our results can be used as a setup to fit amodel with
developable surfaces. For noisy meshes, our method may not gener-
ate smooth boundaries. In future work, we will fit these segments
with smooth developable surfaces and deal with the boundary.
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