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Figure 1: Gait manifold. A scattered point represents a single gait cycle. Similar gaits are placed nearby.

ABSTRACT
Gait is a key barometer to analyze human body conditions. We pro-
pose a personalized gait analysis framework which can diagnose
a possible muscularskeletal disorders with a single gait cycle. Our
framework built over a gait manifold which reveals the principle
kinematic characteristics in the temporal pose sequence. Body pa-
rameters such as muscle, skeleton, and joint limits for an arbitrary
gait cycle can be approximated by measuring similarity in the small
latent space. We present a physical gait simulator to enrich the gait
space paired with the body conditions.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; Physical simulation.

KEYWORDS
character animation, gait analysis, motion manifold, physics-based
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1 INTRODUCTION
Walking is a representative movement that shows the mobility and
balance of the body. Physical and behavioral characteristics, such
as height, weight, body structure, muscle strength, and even fatigue
and mood, cause a variety of gait patterns. As gait patterns reflect
personal body characteristics, sometimes people can identify each
other just by looking at walking styles.

Motion analysis using a camera or motion capture system have
been introduced to extract key features that affect behaviors. There
have been attempts by the medical community to diagnose muscu-
loskeletal disorders of patients through non-invasive gait analysis.
However, rather than utilizing all the kinematic information (joint
orientation, cadence, walking speed, etc.) of the capture data, only
the simple hand-crafted features (maximum knee flexion angle,
crouch angle in the middle of the stance phase, etc.) are used. The
technical challenges come from the high dimensionality of the
temporal pose sequences and the body parameters. Lack of fully
observed pairs between gait patterns and body conditions also
increases the difficulty of a comprehensive analysis.

In this paper, we present a novel deep learning based framework
for the personalized gait analysis. We propose a gait manifold to
find out strong correlation between gait patterns and body condi-
tions. In this compressed space, thousands of dimensions of gait
sequence is represented in 16 dimensions, making it possible to
measure similarity between motions. Our gait manifold is densely
represent the diversity of the gait with bootstrapping via physical
simulation as well as clinical data captured in hospital. We construct
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a well-balanced dataset consists of the pair of body features F and
gait cycles C thanks to gait simulator that is responsive to given
musculoskeletal conditions.

2 OUR APPROACH
The goal of our research is to learn the physical body specification
from a single gait cycle. Our main idea is built on the intuition that
gait analysis can be treated as an opposite of gait simulation which
generates accurate motions under varying body conditions. We
simulate the gait patterns induced by musculoskeletal conditions
and joint limitations, and reversely infer body parameters through
similarity between motions.

2.1 Gait manifold
We employ a neural network based on the Wasserstein Auto En-
coder [Tolstikhin et al. 2017], which can lower the dimension of
motion while maintaining its expressiveness. Gait cycle is a time-
series pose set, each of which is represented as the joint orientations.
We use a human character with lower body that has 11 joints. The
gait data is normalized as 30 frames sequence, starting with a left-
footed wheel-strike, until contact with the ground with the right
foot and then turning the left foot again. Not only normal gaits, but
also motion capture data of patients with cerebral palsy collected
for clinical purposes are used. These patients have musculoskeletal
disorders that cause pathologic motion such as pelvis tilt, femoral
anteversion, knee flexion, and intoeing. Our network learns the
key kinematic features from a gait cycle through compression-
reconstruction processes. The loss of the network includes four
component:

E = Ereconstruct + Emmd + Eroot + Eposition. (1)

where Emmd (Maximum mean discrepancy) forces the distribution
in the original gait space to be maintained in the manifold. We add
forward kinematics layer on the network that computes 3D joint
positions from input vectors to increase accuracy and prevent blur-
riness of the reconstruction. Low-dimensional gait embeddings can
be used to measure the similarity and interrelationship of motion.

2.2 Bootstrapping with physics simulation
Clinical data is highly biased because it captures the severe patients
to evaluate the case-controlled of the surgery. We bootstrap the gait
space from simulated gait which is parameterized with major lower
body conditions. Our controller consists of amuscle actuated system
with 172 muscles of the lower body. Deep Reinforcement Learning
(DRL) have been successfully incorporated with the physics-based
simulation under the variety of the constraints, such asmuscles [Lee
et al. 2019] and bone shapes [Won and Lee 2019]. We simulate the
gait cycle according to the body parameters such as muscle length,
joint range of motion (ROM) limitation of the femur and the degree
of pelvis tilt. Tenmajor muscles are included in the body parameters
(Left and Right Psoas Major, Biceps Femoris, Rectus Femoris, Soleus,
Tibialis). The total body condition parameters is 15.

3 RESULTS & DISCUSSION
Our gait dataset for learning gait manifold consists of 20000 simu-
lated gait cycle and 200 clinical purpose motion captured data. We

Figure 2: Comparison with a gait cycle and its simulated re-
sult with inferred body conditions.

adopt UMAP [McInnes et al. 2018] to visualize the gait manifold in
2D space while maintaining its non-linearity. We recommend that
readers refer to supplementary video for the detailed results.

Figure 1 shows that similar motions located at a close distance
on the manifold. We infer the physical conditions of a gait by
measuring the similarity between embeddings. When re-simulated
with inferred body parameters, a gait cycle similar to the original
data is generated (Figure 2). We now

We demonstrated the motion interpolation to prove that gait
manifold can be used as a substitute for high-dimensional original
gait space. It is possible to create a reasonable gait after mixing two
different gait cycles on the gait manifold with linear interpolation.
We compared our network with typical Variational Auto Encoder
(VAE). After encoding-decoding procedure the original representa-
tion, our network showed 0.7cm loss with Euclidean distance for
each joint, while VAE was 7.1cm.

Our future direction is to increase the number of parameters
for simulation so that we can analyze more pathologies as well as
musculoskeletal disorders in the lower extremities. The more we
can model and simulate beyond the musculoskeletal system (e.g.,
nervous system, mechanisms of the growth and aging), the more
likely we are to discover various diseases. Measuring consistency
with medical diagnosis can increase the practicality of the proposed
algorithm. Inferring human states with vision-based devices rather
than motion capture is also an interesting direction to improve
accessibility.

ACKNOWLEDGMENTS
This work was supported by Samsung Research Funding Center
under Project Number SRFC-IT1801-01.

REFERENCES
Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable

Muscle-Actuated Human Simulation and Control. ACM Trans. Graph. 38, 4, Article
73 (2019).

L. McInnes, J. Healy, and J. Melville. 2018. UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction. (2018). arXiv:1802.03426 [stat.ML]

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. 2017. Wasser-
stein auto-encoders. arXiv preprint arXiv:1711.01558 (2017).

Jungdam Won and Jehee Lee. 2019. Learning Body Shape Variation in Physics-Based
Characters. ACM Trans. Graph. 38, 6, Article 207 (2019).

https://arxiv.org/abs/1802.03426

	Abstract
	1 Introduction
	2 Our Approach
	2.1 Gait manifold
	2.2 Bootstrapping with physics simulation

	3 Results & Discussion
	Acknowledgments
	References

