
Procedural real time live drawing animation
Sofiane Ben Embareck

ESGI
Paris, France

Julien Boutet
ESGI

Paris, France

Félix Cantet
ESGI

Paris, France

Figure 1: Final frame output of our procedural drawing method.

ABSTRACT
This work presents a real-time method to create a procedural draw-
ing animation given a simple image and a set of parameters. The
resulting animation, based on a GPU particle simulation, respects
the input image structure and dynamic to draw and move brushes.
Our work could be helpful for both creating live drawing animation
and, more generally, to create a stylized image reproduction. The
set of parameters allows the user to achieve a wide range of artistic
styles.

CCS CONCEPTS
• Computing methodologies → Procedural animation; Mo-
tion processing; Non-photorealistic rendering; Image-based
rendering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGGRAPH ’21 Posters, August 09-13, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8371-4/21/08. . . $15.00
https://doi.org/10.1145/3450618.3469141

KEYWORDS
rendering, particles, procedural drawing, GPU, real time
ACM Reference Format:
Sofiane Ben Embareck, Julien Boutet, and Félix Cantet. 2021. Procedural real
time live drawing animation. In Special Interest Group on Computer Graphics
and Interactive Techniques Conference Posters (SIGGRAPH ’21 Posters), August
09-13, 2021. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3450618.3469141

1 INTRODUCTION
In computer graphics, an image is often considered as a static ma-
trix and animations come from a sequence of static images. Our
work is motivated by this statement: how could a texture be a liv-
ing and evolutionary process in a real time rendering context? In
video games and computer graphics, evolutionary and dynamics
representations are often based on particle systems. Our work tries
to reconcile these two opposite contexts: one that is static and the
other one that is animated by nature. Our approach is to animate
the steps that lead to the static texture input, resulting in a live
drawing animation. Furthermore, this method gives the ability to
create stylized and unique images by tweaking parameters.

The principle of our method is to provide the program with
an input image and generate a vector field from it. This vector
field is then used to guide particles in a 2D space in accordance

https://doi.org/10.1145/3450618.3469141
https://doi.org/10.1145/3450618.3469141
https://doi.org/10.1145/3450618.3469141

SIGGRAPH ’21 Posters, August 09-13, 2021, Virtual Event, USA Sofiane Ben Embareck, Julien Boutet, and Félix Cantet

with the input image structure. Particles are rendered in a texture
that accumulates every frame, resulting in a believable live painting
animation. To provide a more accurate control over parameters, this
process is separated into multiple particles layers that are composed
in a single texture at the end of each frame

2 ALGORITHM
The method is based on a layered simulation approach. Each par-
ticle layer is simulated and rendered independently, and the total
number of layers is adjustable by the user.

Our method consists of six steps:
(1) Load the Input image and all particle layers in GPU buffers.
(2) Bake a vector field from the Input image in a texture. This

vector field corresponds to the local anisotropy of the input
image [Akl and Germain 2014] that we compute with the
eigen vector of the smoothed structure tensor of the input
image

Figure 2: Visualization of the vector field

(3) Instantiating particles directly in a compute shader to avoid
useless data transfer from CPU to GPU. This instantiation
process sets up all initial per particle data: position, color,
size, speed... The initial color is based on the input image.
The position could be driven by many methods, from a fully
random initialization to a prebaked control map-based ap-
proach, like a sobel filter to identify the edges of the input
image.

Figure 3: Example of an instantiation controlmap computed
with a Sobel Filter

(4) The particle simulation is stepped forward for each frame.
This simulation is based on the vector field texture and is

responsible for updating particles data like position, color
and speed.

(5) Render each particle layer in a texture which accumulates
the rendering of every frame using the layer brush texture
and an indirect instance drawing command.

(6) For every frame, compose all individual particle layers in one
image with a custom, user defined blend function. This blend
function alters the final look of the image and the changes
in the view of the desired output.

3 NEXT STEPS
While the system is robust and tolerant, we have identified some
potential weaknesses:

(1) The parameters could be hard to setup and a small variation
could totally change the final result. Thanks to the real time
rendering context, we can iterate quickly to find the desired
parameters.

(2) The blend function is also a very sensitive step of the al-
gorithm and it cannot be exposed as a simple parameter.
Because there is no universal blend function to achieve a
specific kind of style, a shader programmer is required to ad-
dress this issue, breaking the artistic pipeline consideration.

To address the parametrization complexity, a Neural Network could
be used to setup all parameters based on higher level and artist
friendly parameters. This way, the user trades a little bit of control
for a more pleasant iteration context. Our implementation provides
some simple sequencing tools to control the simulation timing of
each layer. There is much more work to achieve in this domain to
provide a complete toolset to an artist.

4 CREDITS
Original model/artwork: Splash fox, designed and created by Daniel
Bystedt.
https://www.artstation.com/dbystedt
https://twitter.com/3DBystedt

REFERENCES
A. Akl, C. Yaacoub, M. Donias, J. Da Costa and C. Germain, “Structure tensor based

synthesis of directional textures for virtual material design,” 2014 IEEE International
Conference on Image Processing (ICIP), Paris, France, 2014, pp. 4867-4871, doi:
10.1109/ICIP.2014.7025986.

David Vanderhaeghe, John Collomosse. Stroke Based Painterly Rendering. Paul Rosin;
John Collomosse. Image and Video-Based Artistic Stylisation, 42, Springer, London,
pp.3-21, 2012, Computational Imaging and Vision, 978-1-4471-4518-9. (10.1007/978-
1-4471-4519-6_1). (hal-01342483)

	Abstract
	1 Introduction
	2 Algorithm
	3 Next steps
	4 Credits
	References

