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Figure 1: Our approach accurately denoises 1spp Monte-Carlo renderings at full resolution (left) and is capable of denoising
in an accelerated foveated manner (right).

ABSTRACT
In this work, we propose a temporally-stable denoising system that
is capable of reconstructing MC renderings in a foveated manner.
We develop amulti-scale convolutional neural network that starts at
a base (downsampled) resolution and denoises progressively higher
resolutions. Our network learns to use the lower resolutions and
the previous frames to denoise each foveal layer. We demonstrate
how this architecture produces accurate denoised results at a much
lower computational cost.
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1 INTRODUCTION
Path-tracing has largely become the de facto technique for render-
ing animations in the film industry. While path-tracing produces
more realistic visuals, convergence towards a visually noise-free
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image often requires thousands of samples and long computation
times. This is particularly problematic for video game and virtual
reality applications that must deliver high frame rates at increas-
ingly high resolutions, severely limiting the computational budget
for path-tracing. To reduce the number of samples needed, denois-
ing filters can be used to reconstruct missing details and remove
noise in rendered images. Denoising images with an extremely low
number of samples still poses a major challenge and can itself add
processing overhead. Is it possible to use foveation to speed up
Monte-Carlo denoising?

In this work, we propose a multi-scale deep-learning approach
that supports foveated denoising. Inspired by the network designs
of Hasselgren et al.[Hasselgren et al. 2020] and Vogels et al. [Vogels
et al. 2018], we perform the denoising process at multiple scales us-
ing a sequence of small CNNs. Our system downsamples the input
image and auxiliary features, such as shading normal and depth,
to different resolutions and denoises these progressively, feeding
the lower resolution as input to the next layer. We reproject past
denoised frames and use these warped frames as input into our net-
work to improve temporal stability. Our denoiser is inherently able
to perform foveated denoising by producing denoised images for
different retinal eccentricity levels, which can be composited into a
foveated image [Guenter et al. 2012]. This allows us to significantly
cut down on inference time by generating only a small portion of
the image around the gaze point at finer scales.

2 APPROACH
In our system, we progressively downsample the input by a factor
of 2 and use it at each scale. In our implementation, we use a set
of N = 4 scales. We perform the denoising process at each scale
using a small UNet. Specifically, starting from the coarsest scale,
our network’s input includes 6 channels (3 for illumination, 2 for
normal, and 1 for depth) and outputs the denoised illumination. To
ensure temporal coherence, we warp the previous frame’s denoised
using screen-space motion vectors. Similar to the other auxiliary
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features, we downsample the reprojected denoised illumination by
a factor of 2 and use it as input to the neural network for each layer.

We compute the denoised illumination at the current scale, through
a weighted combination of the intermediate output at the current
scale, a low frequency extraction of the intermediate output, and the
upsampled denoised image from the coarser scale. We also compute
a soft mask to blend the last frame’s reprojected denoised illumi-
nation with the current frame’s denoised illumination. Training is
done without foveation (i.e., all layers have the same resolution).

2.1 Foveation
Full-resolution rendering is only necessary for a small area cen-
tered around the gaze point [Guenter et al. 2012]. As eccentricity
increases, spatial resolution decreases substantially. In our system,
we take advantage of this to significantly reduce the computational
cost for generating foveated images. We follow the findings, pre-
sented by Guenter et al. [Guenter et al. 2012], that demonstrate
a user-validated resolution model for foveation. Specifically, we
discretize the eccentricity angles into 4 different scales and obtain
the radial eccentricity ei (measured in degrees) at each scale as
follows:

ei =
si+1w∗ −w0

m
(1)

where we use the default parameters by Guenter et al. for a 51cm-
wide display, distance of 59cm to the screen, and resolution of
1920 × 1080: w0 = 1/48, w∗ = 0.0516, and m = 0.0220. m is a
modifiable slope parameter that can be changed depending on the
scene, but we use the suggested conservative threshold that was
validated through user studies [Guenter et al. 2012]. Moreover, si
is the downsampling factor of the scale i , i.e., s3 = 4. The angular
eccentricity in degrees ei can then be easily converted eccentricity
in pixels, ri , based on the distance from the screen and the resolution
of the display. Note that, we compute the eccentricities only for
scale i = {1, 2, 3}, since the coarsest scale is essentially the base
layer and needs to be generated at full size.

We obtain the final foveated image by alpha blending different
scales from the coarsest to the finest. We compute the blending map
for each scale according to the eccentricity at that scale, using the
smoothstep equation (Hermite cubic). Only a small area around the
gaze point is denoised at full resolution. Other areas are denoised at
lower resolutions, depending on the eccentricity, and then bilinearly
upsampled to save computation time.

3 RESULTS
Our network’s frame time is approximately 68.4ms on a 1920×1080
resolution image without foveation. With foveation, the best case
frame time is 9.6ms (7.1x speedup) and the worst case is 14.1ms
(4.8x speedup). Times were measured on an NVIDIA RTX 2080
Super GPU. The best case occurs when the gaze point is focused
on the corner of the screen while the worst case occurs while the
gaze point is focused on the center of the screen. It is important to
note that the speedup amount largely depends on the central gaze
region, which can also change with more aggressive parameters.

As shown in Fig. 2, our denoiser performs denoising at a higher
resolution only around the gaze point. The reference images uses

1spp Ours Reference

Figure 2: Our foveated results for 1spp input. The red dot
represents the gaze point.
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Figure 3: Image quality for each foveal layer. Layer 1 is de-
noised at full resolution for various scenes.

the same foveation logic [Guenter et al. 2012] as our denoiser. De-
spite only using a 1spp input, our denoiser is able to produce output
close to the reference images.

Foveation quality depends on the quality of each layer output.
To this end, we run two tests to evaluate our network’s per-layer
output quality. In our first test, we compare our method’s per-layer
output to the ground truth image bilinearly downsampled to the size
of the respective layer. In our second test, we bilinearly downsample
our network’s full resolution output (i.e., layer 1) and compare it
to a bilinearly downsampled full-resolution ground truth image.
We compute the relative MSE for the comparisons and depict our
results in Fig. 3. Our network produces a similar relative MSE for
lower levels despite requiring significantly less computation.
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