Analytically Learning an Inverse Rig Mapping

Stephen Gustafson Aaron Lo Paul Kanyuk
Pixar Animation Studios Pixar Animation Studios Pixar Animation Studios
sgustafson@pixar.com alo@pixar.com pkanyuk@pixar.com

ABSTRACT

One of the main obstacles to applying the latest advances in motion
synthesis to feature film character animation is that these methods
operate directly on skeletons instead of high-level rig parameters.
Loosely known as the “rig inversion problem”, this hurdle has pre-
vented the crowd department at Pixar from procedurally modifying
character skeletons close to camera, knowing that these procedural
edits would not be reliably transferred to the equivalent motion on
the full character for polish.

Prior attempts at solving this problem have tended to involve
hard-coded heuristics, which are cumbersome for production to
debug and maintain. To alleviate this overhead, we have adopted
an approach of solving the inversion problem with an iterative
least-squares algorithm. However, although there are numerous
existing methods for solving this problem, the computation of the
rig Jacobian is a frequent requirement, which in practice is prohibi-
tively expensive. To accelerate this process, we propose a method
wherein an approximation of the rig is derived analytically, through
an offline learning process. Using this approximation, we invert
full character rigs at real-time rates.

CCS CONCEPTS

« Computing methodologies — Procedural animation; Ma-
chine learning approaches; - Theory of computation — Nu-
meric approximation algorithms.

KEYWORDS

rig inversion, machine learning

ACM Reference Format:

Stephen Gustafson, Aaron Lo, and Paul Kanyuk. 2020. Analytically Learning
an Inverse Rig Mapping. In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Talks (SSGGRAPH °20 Talks), August 17,
2020. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3388767.
3407316

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH °20 Talks, August 17, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7971-7/20/08.

https://doi.org/10.1145/3388767.3407316

1 INTRODUCTION

Production rigs are arbitrarily complex, and have no well-defined
mapping for computing rig parameters from joint transformations.
Past attempts at solving the inversion problem have involved hard-
coded heuristics, both in the form of rig-specific code as well rigged
networks that describe the mapping, requiring significant time to
setup and maintain. This has previously caused film productions to
forego motion synthesis techniques that operation in terms of joint
transforms, since animation polish requires inversion to parameters.

To automate this process, we developed a work-flow in which
the only input required from the user is the list of parameters to
use for the inversion process. Using those parameters, the inver-
sion is solved using the well-known Gauss-Newton (GN) iterative
least squares algorithm. Using GN, we are able to invert from joint
transforms to rig parameters within an acceptable threshold in
most cases. In cases where GN fails to converge, the Levenberg-
Marquardt (LM) [Levenberg 1944] algorithm is used instead.

Between GN and LM, we are able to solve all of our inversion
problems. However, both algorithms require the computation of the
Jacobian matrix per iteration. Althought it is possible to compute
the Jacobian using analytical methods [Orin and Schrader 1984],
the arbitrary complexity of our rigs requires us to to evaluate the
rig Jacobian using methods that are applicable to “black box” rigs:
Namely, finite-differencing (FD). In practice, computing the Jaco-
bian using FD is prohibitely expensive !, requiring n? rig executions
[Hahn et al. 2012]. This problem is compounded by the statefulness
of our rigs: Modification of rig parameters is not thread-safe, so
it is not possible to parallelize the evaluation of the Jacobian by
computing different columns on different threads.

To accelerate the Jacobian, we learn an approximation of a rig
through an offline training process. The training procedure exer-
cises rig parameters to obtain a new rig function, which approx-
imates the original. Unlike the original rigs, the approximation
function is stateless, allowing the computation of the Jacobian to
be performed in parallel. Further, the approximation provides suf-
ficient rig knowledge to allow the problem to be partitioned into
sub-problems, enabling additional parallelization.

2 RELATED WORK

seen a variety of solutions. In [Holden et al. 2017], the Jacobian
is approximated using Gaussian processes, leading to a real-time
inversion procedure. This was taken one step further in [Holden
et al. 2015], which performed the complete inversion using neural

! Average of 3.5s to compute the full rig Jacobian on a production rig, requiring over
minute to iteratively solve just the first frame. Inverting animations may take hours.


https://doi.org/10.1145/3388767.3407316
https://doi.org/10.1145/3388767.3407316
https://doi.org/10.1145/3388767.3407316

SIGGRAPH °20 Talks, August 17, 2020, Virtual Event, USA

networks. However, both methods utilize a pool of pre-generated
animations to serve as training data. fIn the early stages of produc-
tion, our animation inventory is inadequate to feed such training
processes. Given uncertainty at the effectiveness of these tech-
niques on purely synthetic data, and concerns over the requisite
training time as character rigs undergo frequent changes early in
production, we opted against these approaches.

3 RIG APPROXIMATION

We define the rig functions as F(f), taking f rig parameters, and
producing an array of 4x4 matrix transformations. A classification
procedure exercises a source rig over a range of values to decom-
pose F(p) into a set of operators P = {Py(fo), P1(f1), - - - Pn(Bn)},
where P; : R — My, and P;(0) := I. The result of each P; con-
tributes to the approximation by multiplying against a subset of the
transformations resulting from F(0). To construct an approximation,
we must obtain both the set P and its composition order.

Classification begins by analytically determining a suitable func-
tion for each P; such that for each affected output k of F(f),

Fr(QPi(a)-Fi(:a)

o <E€

where §;a denotes the set of rig parameters fixed at 0, with the i’th
entry equal to a, and € specifies an error threshold for validation.
Each P; is determined by analytically factoring Fy (8;a)F(0)~! into
a set of pre-defined operators, and selecting the best fit, if any.
The pre-defined set of operators includes translation and scaling
along an arbitrary axis, rotation about an arbitrary axis and pivot,
and uniform scaling about an arbitrary pivot. Once a potential P;
is selected, the choice is validated against other affected outputs
of F(f;). If a suitable P; cannot be determined, the parameter is
discarded and will not be used for inversion.

The set of pre-defined operators do not always accurately model
the original function. In production rigs, we encounter some defor-
mations which are rotation-like, but not true rotations. A generous
value of € allows slightly inaccurate approximations to be adopted.

4 DERIVING COMPOSITION ORDER

Having identified a set of operators, their composition order must
be determined. The relative composition order of the i’th and j’th
rig parameters can be determined by sampling the rig function at
F(0), F(6;a), F(§ja) and F(S;ax + §ja). If the effect of parameter i
precedes that of j, then we expect that for each affected output k,

Fi(8ia)F(0)™" = Fie(8icx + 8j0)F(8je)”! (1)
Conversely, if the effect i applies after j, then we would expect:
Fi(8j)Fi(0)™" = Fi(Sicx + §ja)Fi(810) ™! @

If both (1) and (2) are true, that implies that the rig parameters
are linearly independent and may be sorted relative to each other
in any order we choose. If neither equation holds, that suggests
that the parameters have a complex inter-dependency that can’t be
approximated through our pre-defined function set.

The final composition order is derived by sorting the rig pa-
rameters, based on (1) and (2). Since some pairs of parameters are
unsortable, items are sorted using an insertion sort algorithm, uti-
lizing a modified binary search. If (1) and (2) are both false while
comparing parameters, both parameters are discarded.

Gustafson and Lo, et al.

It is possible that some operator classifications remain invalid
following the sorting procedure, such as if the effect of a rig param-
eter changes when two other parameters are placed in a certain
configuration. But sorting parameters have proven sufficient for
our production rigs, given the types of parameters they provide.

5 INVERSION

To invert joint transformations, we solve for rig parameters using
GN in the normal way, substituting the original rig function with
the learned approximation. At each iteration, the Jacobian is still
computed with FD. However, since the rig function is stateless, the
columns of the Jacobian are able to be computed in parallel. If GN
fails to converge after a fixed number of iterations (typically 30),
an LM solve is attempted instead.

An additional benefit of the approximation is that, whereas the
original rig was arbitrarily complex, the approximation uses a fixed
set of operators with a trivially introspectable structure. By ana-
lyzing the structure, we are able to partition the rig into smaller
problems, each of which can be solved in parallel. For instance, the
set of all joints that make up an arm must be solved together, but
the left arm can be solved independent from the right arm.

6 RESULTS AND APPLICATIONS

By simplifying the rig function and parallelizing the Jacobian, we
are able to reduce the average time taken to compute the full rig
Jacobian at each iteration from 3.5 sec. to 6e~# sec. — a reduction
by more than 5000x. By combining this with additional parallelism
enabled by rig partitioning, we have been able to invert joint trans-
forms to rig parameters with target convergance thresholds at a
rate of 2ms/frame, placing the inversion procedure firmly in the
real-time realm.

Although our approach required a training procedure, a relative
small number of evaluations have been required in practice. Com-
mon Common production rigs tend to ~ 3k rig evaluations during
training, a process taking around 2 minutes.

In application, our rig inversion implementation allowed the
crowds department of the Pixar film Onward, to use procedural
lookats and virtual production techniques much closer to camera
than previously possible. Rig inversion is now a standard tool in
Pixar's crowd pipeline and is facilitating further use of motion
synthesis and modification for feature film animation.

REFERENCES

Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian
Coros, and Markus Gross. 2012. Rig-Space Physics. ACM Trans. Graph. 31, 4, Article
72 (July 2012), 8 pages. https://doi.org/10.1145/2185520.2185568

Daniel Holden, Jun Saito, and Taku Komura. 2015. Learning an Inverse Rig Mapping
for Character Animation. In Proceedings of the 14th ACM SIGGRAPH / Eurographics
Symposium on Computer Animation (Los Angeles, California) (SCA ’15). Association
for Computing Machinery, New York, NY, USA, 165-173. https://doi.org/10.1145/
2786784.2786788

Daniel Holden, Jun Saito, and Taku Komura. 2017. Learning Inverse Rig Mappings by
Nonlinear Regression. IEEE Transactions on Visualization and Computer Graphics
23, 3 (March 2017), 1167-1178. https://doi.org/10.1109/TVCG.2016.2628036

Kenneth Levenberg. 1944. A method for the solution of certain non-linear problems in
least squares. Quart. Appl. Math. 2, 2 (July 1944), 164-168. https://doi.org/10.1090/
qam/10666

David E. Orin and William W. Schrader. 1984.
the Jacobian for Robot Manipulators.  The International Journal of Robot-
ics Research 3, 4 (1984), 66-75.  https://doi.org/10.1177/027836498400300404
arXiv:https://doi.org/10.1177/027836498400300404

Efficient Computation of


https://doi.org/10.1145/2185520.2185568
https://doi.org/10.1145/2786784.2786788
https://doi.org/10.1145/2786784.2786788
https://doi.org/10.1109/TVCG.2016.2628036
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1177/027836498400300404
https://arxiv.org/abs/https://doi.org/10.1177/027836498400300404

	Abstract
	1 Introduction
	2 Related Work
	3 Rig Approximation
	4 Deriving Composition Order
	5 Inversion
	6 Results and Applications
	References

