
It’s Raining Squids!
Simulating a rain of dissolving Squids for Watchmen

Mathieu Leclaire
Lead R&D, Hybride, A Ubisoft division

mleclair@hybride.com

Danny Levesque
Lead FX, Hybride, A Ubisoft division

dlevesque@hybride.com

Richard Clement-Tam
Lead Sequence FX, Hybride, A Ubisoft division

rclementtam@hybride.com

Christophe Damiano
Lead Lighting, Hybride, A Ubisoft division

cdamiano@hybride.com

Figure 1: still image fromWatchmen (left) & a capture of the simulation process (right). ©2019Home Box Office, Inc. All Rights
Reserved.

ABSTRACT
Simulating thousands of small squid-like creatures falling to their
deaths, oozing a gel-like slime on impact and slowly melting away
was no easy task. Managing the amount of pink one-eyed extrater-
ritorial squids proved to be quite a challenge because they also
had to interact with one another as well as with the different sur-
rounding elements. We had complex fluid simulations to manage as
the squids would first transform into gelatin and then completely
dissolve. Shading the squids also proved to be quite a challenge
because we had translucency and complex internal shadings to han-
dle, which required very long render times since we were dealing
with such a large quantity of creatures. We needed to be able to
iterate quickly so we could work closely with the client in order
to find that perfect balance of squid dynamics such as splashing,
melting and shading.

CCS CONCEPTS
• Computing Methodologies; • Physical Simulation, Anima-
tion and Rendering;;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’20 Talks, August 17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7971-7/20/08.
https://doi.org/10.1145/3388767.3407357

KEYWORDS
Simulation, deformation, rendering, Watchmen, FX, flip simulation

ACM Reference Format:
Mathieu Leclaire, Danny Levesque, Richard Clement-Tam, and Christophe
Damiano. 2020. It’s Raining Squids!: Simulating a rain of dissolving Squids
forWatchmen. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Talks (SIGGRAPH ’20 Talks), August 17, 2020, Virtual
Event, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3388767.3407357

1 INTRODUCTION
Setting the tone for this 2019 version of Watchmen, Hybride’s most
creative VFX work in Episode 1 translated into baby squids raining
down on the city of Tulsa, Oklahoma.

The sequence refers to the Watchmen novel’s ending, where a
giant psychic squid is teleported into the center of New York City
by Adrian Veidt on November 2, 1985. As Veidt predicted, world
leaders believe the Earth is under attack by an alien threat and
come together—ending the threat of nuclear war—to fight this new
enemy.

As a reminder of this event, baby squids regularly rain down
onto the city where residents seem relatively unfazed by the event.
In this sequence, Hybride’s extensive experience was deployed to
create baby squids that change form completely once they’ve fallen
from the sky.

https://doi.org/10.1145/3388767.3407357
https://doi.org/10.1145/3388767.3407357
https://doi.org/10.1145/3388767.3407357


SIGGRAPH ’20 Talks, August 17, 2020, Virtual Event, USA Mathieu Leclaire et al.

2 SIMULATION
The first step consisted in figuring out how we could drop hundreds
of little creatures from the sky and simulate contact with the ground
as well as with the car where our main characters were seated. The
first thing we tried was using Finite Element Method solver to
simulate the fall and impact. To keep the desired level of detail
required for each creature, we quickly realized we needed to use a
high-resolution tetrahedrons mesh to properly simulate and deform
our render mesh. The results of the dynamic simulations looked
great, but we couldn’t simulate more than a few at a time before
the memory requirements exceeded the memory limit available in
our machines. Since our mandate required that we simulate several
hundreds of these creatures with full interactions, the FEM solver
would be unable to manage the level of complexity we were looking
for.

We decided to turn to Houdini’s Vellum solver (a XPBD-inspired
solver with substep-invariant stiffness) to see how far we could
push the simulations. Although we obtained good results with
faster simulation times and a little less memory foot-prints than
with the FEM based approach, it still wasn’t scalable enough to
efficiently interactively simulate the quantity of squids we were
trying to manage.

2.1 Instancing
For mid-range squids, we turned to instancing. We used FEM to
simulate a few squids falling on a flat grid. Once we achieved simu-
lations that were satisfactory, we cached those out and instanced
them all over our scene with random orientations and time offsets.
To obtain proper results on non-flat surfaces, we used a point based
cage deformer to deform the actual simulations from a flat grid
onto the curved surfaces where we instanced the squids.

We also mixed these results with particle-based simulations
where we instanced pre-cached FEM impact deformations. We basi-
cally took the original FEM simulations and removed the translation
to keep the squid at origin, while keeping the shape animations re-
sulting from the collisions. We then synchronized and oriented the
instances on the particles motion so we could match their impact
time with the impact time of the zero out deformation cache.

2.2 Rigid Body Dynamics
For foreground shots where we see squids collide, results needed to
be more precise so we turned towards a custom RBD solution. We
created a lower-resolution outer shell of squids that we fractured
using Voronoi. We then created soft constraints between the frac-
tured pieces and used the template to simulate hundreds of copies.
This way, we could easily and efficiently simulate several hundreds
of RBD-squids. We just needed to create a few custom constraint
forces to ensure the squids would stick to the collision surface,
making sure they would bounce, roll and decelerate properly until
we got a believable simulation.

Once we were happy with the simulations, we did a simple post-
process to do a point based cage deformation of the high-resolution
render meshes using the low-res fractured simulated meshes.

This meant we could now efficiently simulate all of our squids
and have them interact with one another. However, the problem is
that by using RBD, the squids started looking stiff and rigid, and

lost the soft and squishy feeling you would expect from this type
of creature. In order to retrieve our jelly-like property back into
our simulations, we created a custom squish-and-squash deform
operator that would compress the deformed mesh towards the
surface using the surface normal with volume retention. The post-
process enabled us to regain control and helped us deliver the
expected results.

2.3 Splash Simulations
High-resolution FLIP simulations were required to produce gelatin-
type liquids that splatter when the squids land on a surface. Cover-
ing the necessary surfaces needed to manage all of these squids at
the high resolution we sought was impossible to simulate on one
machine. We therefore created a system that would automatically
cluster squids together to create smaller zones and we would then
isolate the squids interacting in a zone and send a FLIP simulation
on the farm so we could simulate each zone independently. The
set-up would gather all the simulation caches and read them si-
multaneously to create a final render mesh. Although there was
no interaction between the different zones because they were sim-
ulated independently, the overlapping nature of the results made
it almost impossible to notice any lack of interaction. Having the
simulations split into sections also meant that we would just have
to simulate the area in question when changes were required. In
this way, we didn’t have to worry about resolution limits, which
allowed us to quickly manage very complex simulations by dividing
them among different machines.

2.4 Melting
The squids dissolved within 10-15 seconds after entering the at-
mosphere, but during the process they had to stay recognizable as
long as possible.
In order to do so, we converted our squid meshes into a dense set of
FLIP particles. We then used various propagating noises to increase
the heat in the simulations affecting density and viscosity, allowing
the mesh to melt off.

3 RENDERING
Raytracing through translucent creatures comprised of multiple
complex internal structures can result in very long render times.
Managing up to millions of them can clog your render farm if
shading is not carefully managed.

Several controls were exposed to quickly activate / deactivate
certain layers of shading and control the number of rays relative
to motion blur intensity. We also encouraged artists to experiment
with various denoising solutions to speed up renders. All these
tools gave them enough flexibility to handle the complexity that
comes with rendering multiple layers of transparency: reflection
and refraction levels between the melting squids, the sticky residue
from the previous squids; the wind-shield, and the actors in their
environment location.

Lastly, we also needed to find a way to properly transfer the
surface shaders and UV information to the FLIP particles in order
to control the shading as the mesh deformed to ensure the textures
didn’t start to stretch as the squids were melting and dissolving.


	Abstract
	1 INTRODUCTION
	2 SIMULATION
	2.1 Instancing
	2.2 Rigid Body Dynamics
	2.3 Splash Simulations
	2.4 Melting

	3 RENDERING

