
Web with art and computer science

 Anna Ursyn Terry Scott
 School of Art & Design School of Natural and Health Sciences
 University of Northern Colorado University of Northern Colorado
 ursyn@unco.edu tscott@fisher.unco.edu

Abstract

This paper describes the integrative, cooperative instruction in
web design that applies art in technical instruction
(programming). Students work in an interdisciplinary style
drawing upon concepts from programming, web design, computer
graphics, art, and design, both in the form of interdisciplinary
studies and in a web construction and design class. Examples of
student work support presentation.

Categories and Subject Descriptors
K.3.1. [Computer Uses in Education] Computer-assisted
Instruction
J.5. [Fine Arts]

General Terms
Algorithms, Design, Languages

Keywords
Collaborative practice, interdisciplinary instruction, Science–art
connection, programming, web design, computer graphics, art,
and design.

1. Introduction

In this paper, we describe a proactive environment aimed to
integrate computer graphics, web design, and visual learning
skills. We describe instruction where students enhance their
creative problem solving using various programming languages
and combine both the precise and the expressive way of thinking.
First, we provide a review of research on the benefits of applying
visual science in technical instruction, then a review of relevant
literature on an integrative, interdisciplinary way of teaching,
followed by a narrative about the interdisciplinary course in web
design, that includes methods, analysis, discussion and
conclusions, the challenges, successes, and outcomes coming
from the experience gained through our long-term collaboration.

Our teamwork has been possible two ways: through an
interdisciplinary Computer Science/Art program that allows
students to create their own course of studies and the Honors
Program that offers opportunities for the faculty to merge their
areas of expertise. In the spring semester of 2006, as an
interdisciplinary team of professionals in computer science and
art, we offered an integrative course of studies entitled “Web
Construction and Design” aimed to improve students’
understanding and skills in the areas of both computer science and
art.

Both faculty members have been interested for some time in the
overlap between thinking in terms of art and computer science
[Ursyn et al. 1997]. This project was a continuation of previous
studies on the effects of art instruction on student achievement in
science [Ursyn 1997, 1991].

2. Rationale

There is a growing need for people who possess both
programming skills and art and design skills. Usually, students
tend to be better in either Art/Design or in Computer Science, but
the best opportunities are for those who excel in both areas. The
authors have been working on providing students with ways to
merge the two disciplines. Integrative instruction was intended to
develop educational and training methods that involve students in
learning programming through art (one can view the source code).

The environment for web creation is a natural place to start with
programming. Web design has become a significant part of media
and its social, cultural, political, and critical forces. Since the
number of people designing websites is growing rapidly and there
is growing competition, people need to understand concepts
behind art and design. The same applies to the industries that
involve animation. Thus, it is expected that more and more
students will find a way to combine their art and programming
skills.

3. Conceptual Framework

3.1. Overlap between thinking in terms of art and
computer graphics

Thanks to classical works of the precursors of cognitive science
such as Benjamin Bloom [e. g., 1971], J. P. Guilford [1967], and
then R. J. Sternberg [1991, 1992] it has been generally accepted
that intellectual behavior in learning occurs in the cognitive,
psychomotor, and affective domains, with knowledge,
comprehension, application, analysis, synthesis, evaluation,
induction and deduction processes. According to the Guilford’s
structure-of-intellect model, the levels of cognitive activity
include: operation (evaluation, convergent production, divergent
production, memory, cognition), product (units, classes, relations,
systems, transformations, implications), and content (figural,
symbolic, semantic, behavioral). Cognitive thinking is often
referred to problem solving, hypothesis testing, and concept
acquisition. Sternberg’s model of human intelligence included
components or executive planning, monitoring, and evaluation
processes, performance processes, and knowledge acquisition
processes, all of them allowing learning, comprehending, and

remembering information. He defined orders of relations, with
first-order relations between primitive terms, second-order
relations between relations, and so on.

Critical thinking skills entail logical thinking and reasoning that
include comparison, classification, sequencing, cause/effect,
patterning, webbing, analogies, deductive and inductive
reasoning, forecasting, planning, hypothesizing, and critiquing
[Dunbar 1997]. Critical thinking that traditionally has been
ascribed to left-brain reasoning is typified as analytic, convergent,
verbal, linear, objective, judgmental, focused on a subject, and
probability of its change. Scientific thinking, used in investigating
processes, events, acquiring new and integrating previous
scientific knowledge, involve cognitive processes for gathering
observable, empirical, measurable evidence, generation of a
theory, designing an experiment, hypothesis testing, and data
interpretation. Intelligence is creative and self-creative within our
inner realities, in process of self-actualization, as in T.S.Eliot’s
verse, Little Gidding, "Either you had no purpose or the purpose
is beyond the end you figured and is altered in fulfillment."

Visual thinking and learning involves cognition and refers to the
idea that communication occurs through visual symbols, as
opposed to verbal symbols, or words. It takes place through
visual, often nonlinear processing happening beyond the
definitions of language and often produce personal referents and
insights to meaning that cannot be translated into linear manner
using language. Creative thinking that enables students to create
something new or original involves originality, elaboration,
brainstorming, imagery, metaphorical and associative thinking.
Guilford [1968] described different types of creative abilities:
sensitivity to problems, fluency factor, novel ideas, flexibility of
mind, synthesizing and analyzing ability, reorganization or
redefinition of organized wholes, complexity, evaluation,
motivational factors and temperament. Creative thinking that
traditionally has been ascribed to right-brain activity may be
characterized as generative, divergent, visual, associative,
subjective, and open to possibilities and novelty.

It is possible to discern several areas for overlapping between
thinking in terms of art and computer graphics. Thanks to the
ingenious work of Rudolf Arnheim [1969, 1974, 1990] and then
the master work of Edward Tufte [1983, 1990, 1997], the mode of
applying the visual along with the verbal way of communication
has been accepted, developed and taught in the precise and
thoughtful way, with all advantages coming from the chances for
experiencing the insight and using mental shortcuts provided by
this way of thinking. The perception of a shape requires the
grasping of its essential structural features. Research on scientific
thinking [Dunbar 1997] revealed that much of the scientists’
reasoning and over 50% of the findings resulted from interpreting
unexpected findings that were very different from the hypotheses
based on literature. It was also found that scientists use analogies
from similar domains in proposing new hypotheses. The visual
way of thinking is related to the methods of simulation and
visualization because it brings forth an ability to perceive complex
systems.

3.2. Learning and Thinking Visually

Computer graphics has a multidisciplinary nature, involving
components of cognitive psychology, geometry, imaging science,
technology, art and design, and computer science [Bertoline and

Laxer 2002]. Computer Graphics has become a discipline of study
involving the two tracks, artistic and technical. Knowledge-based
curricula contain the fusion of artistic and technical theories,
necessary for developing skills that are attractive to both computer
science and art majors [Alley et al. 2006]. An understanding of
the structured type of thought that goes into computer science
could improve everyday interactions and work environments for
artists and scientists. It may be valuable to those who are pursuing
a career in computer graphics, animation, and web. According to
Eppler and Burkhard [2006], visualization outperforms text alone
and increases our ability to think and communicate. People think
in pictures, so knowledge must be recreated in the mind of the
receiver. Visual metaphors combine the creative leap of sketches
with the analytic rationality of conceptual diagrams. They also
organize and structure information in a meaningful way, and
convey a through the key characteristics or associations of the
metaphor. Communication calls for language, imaginary or
articulated; pictures need a caption. Because language is
metaphorical, there is not non-metaphorical thought. Thus,
visualization is pictorial and linguistic at the same time, both
kinds being complementary parts of communication. Thus,
according to Bertschi and Bubenhofer [2005], the metaphor is a
tool of conceptual economy, but also a tool of discovery of
structures within novel or unfamiliar situations.

A growing number of authors have adopted an idea of teaching
problem solving and decision-making skills with the use of mental
imagery. Hartman and Bertoline [2005] asserted that the computer
graphics learning environment takes advantage of a learner’s
ability to quickly process and remember visual information, as
about 80% of sensory input comes from our visual system. The
authors postulate that a body of knowledge called Visual Science
should be studied, practiced, and scientifically verified as a
discipline. They define Visual Science as the study of the
processes that produce real images or images in the mind.

3.3. Visualizing Problems, Creating Simulations

There are a growing number of industries that request the ability
to create graphic images directly from data and algorithmically
manipulate this data, whether linear, 3D, or multidimensional
[Graham 2005]. Another demand is for the use of interactive
visual representations of abstract data to amplify cognition
[Bederson and Shneiderman 2003]. Interactive visualization is an
essential issue in organizational communication or knowledge
media design [Klein 2005]. Burkhard et al. [2005] list types of
visualization as sketches, diagrams, images, maps, objects,
interactive visualizations, and stories. Frameworks for knowledge
maps involve questions about their function type (what?),
recipient type (whom?), and map type (how?) that may include a
heuristic, diagrammatic, metaphoric, geographic, 3D, interactive,
or mental map. Klein [2005] postulates that simulation models
lead to actions in the real world, because real world figures and
interrelations go into the simulation.

3.4. Integrative Curricula

Computer graphics has become an attractive field of study to both
computer science and art majors, as it often provides creative and
self-motivating job opportunities. Tasks are made easier when
students have expertise in both these areas and are likely to work
together. Specialists working in game design need skills provided

by art courses. Art students need technical skills for multimedia
productions, and advanced Web page design. Magazine and
newspaper publishers need people with programming skills when
they launch online video advertising. The same opportunities are
in the TV networks, newly established firms, and web portals.

Digital art programs have additional components that focus on
software instruction and technological literacy [Wands 2006].
Computer graphics specialists design programs to provide
research-oriented interdisciplinary collaborative experiences that
engage students from varying disciplines [Palazzi et al. 2006].
Several universities have already developed collaborative
interdisciplinary curricula designed for art and computer science
undergraduates in a liberal arts environment. For example,
students are provided with experiences in computer graphics at
the Advanced Computing Center for the Arts and Design at the
Ohio State University [Palazzi et al. 2006], the interdisciplinary
program in computer graphics at the Departments of Art and
Computer Science at Shippensburg University [Mooney 2006],
Clemson University [Matzko and Davis 2006], Minneapolis
College of Art and Design [Border 2006], and many others.
Several authors stress the relationship to spatial visualization
abilities and computer graphics education [Hartman and Bertoline
2006]. In several cases, using computers as design tools and
applying computer animation and graphics served for teaching
elementary school level mathematics [Eisenberg et al. 2005].

4. Pedagogical Strategies: Interdisciplinary
Approach

The main objective of our integrative instruction was to improve
students’ technical expertise in computer science, their art skills,
and their understanding of the connections between computer
science, art, and design. Students worked in an interdisciplinary
style, drawing upon concepts from programming, web design,
computer graphics, art, and design. We have adopted a
constructivist approach: students made drawings rather than read
about theoretical drawings. Graphics they created made a tool to
learn with. At the same time, we have adopted a cognitive
framework for solving technical challenges by introducing the
integrative environment in the classroom.

Students came from many different areas of study, although there
were more technical students than those from the humanities.
Some of them had no prior experience with programming.
Students enrolled in Interdisciplinary Program have chosen C++,
Open GL, and Python for their Computer Science part of the
training, to name just a few languages. Students also used
commercial programs, such as Adobe Studio, Macromedia Studio,
3dsmax and more. It allowed for changing and improving image
files.

During the Spring 2006 Web Design course, the Computer
Science professor offered instruction in technical areas, with
consultation from the art professor. It involved HTML and CSS
(cascading style sheets used extensively on the Web to make web
pages have the same formatting and layout) [Hart-Davis 2005;
Niederst 2001] and JavaScript used extensively to make web
pages. It was included because it uses client-side processing
[Pollock 2004]. PHP was chosen because it is used on the server
side. It allows the code to be placed inside tags that are nested
inside HTML tags, it is open source, and interfaces easily with
MySQL [Harris 2004]. MySQL was chosen because it is open

source and because database is required to maintain information
on many websites [Harris 2004]. Blogs use this technology, as
well as Wicki.

The chosen areas were open source and may be recognized by the
initials LAMP, which stands for Linux, Apache (the web server),
MySQL, and PHP. Students and instructors alike learned much
about the coding during the class. The computer server for the
class ran Slackware Linux. A separate directory was created for
the class and each student was given a directory of her/his own
that was owned by them and had a symbolic link from their home
directories to the individual web directories.
A unique feature of both the class and the program were that
assignments were open ended. This means, students were
receiving the sources for inspiration within a framework provided,
rather then a description of an expected outcome. They could go
any direction they’d choose. Some of them were looking for
answers on the Internet, while some tried to create something
totally new. The art professor gave assignments that required the
class members to use the new technical concept following a
common design idea. Class members created their own individual
designs around this common idea. The students were very good at
creating interesting and varied projects around the given concept.

Figure 1 shows one of the class projects. A student, Royce Wood,
designed a robot. The user had 10 points to distribute between
robot’s intelligence, weaponry, and speed. Depending on the
visitors’ choices, different robots would show up on the screen.

Fig. 1. Example of class assignments – design a robot.

The two instructors had different teaching styles. The computer
science instructor presented information in a lecture style. On the
other hand, apart from an introductory talk on a particular subject,
the art professor gave the assignments so that they were not
prescriptive and allowed for much creativity. The art instructor
delivered some lectures on design, art, information visualization,
visual data organization, and presented some examples of
computer generated art. Students answered some questions
prepared by the instructor for a proof of their understanding.

The technical aspects were relatively easy to evaluate since either
the software worked or it did not. The art and design assessment
was handled by having the whole class participate in critiques of
each class member’s work. The class critiques were aimed to look
at the progress made

5. The Assignments

Students were required to post their web pages on the server so
that all could observe what they had accomplished. The
interdisciplinary students were asked to develop projects and also
to present the outcomes in front of their Interdisciplinary
Committee.

The students were encouraged to organize explicitly:
1. The assignment or test requirements
2. The objectives of the assignment
3. The programmer’s thoughts, and what they learned
4. Pertinent links for the assignment
5. The created webpage(s).

In one of the class assignments, the students were asked to create
a game environment that promoted them as
programmers/designers. This assignment was meant to serve as
their own portfolio/resume, outlining their skills, knowledge, and
achievements. It was recommended that the portfolio be
interactive, informational, and entertaining so the audience would
remember them. The user might be forced to do something or
there might be an element of being challenged, if they'd prefer.
Description of this assignment should include words: playful,
interactive, challenge, and surprise. It was recommended that this
web page (one or more pages) be a "show and tell" and be active
rather than passive. Students were encouraged to try to showcase
their skills in web design, specifically in making the web pages
very interactive for the user.

Another assignment, entitled a “C++ Cow program” shows a visual
learner how the basic structure of C++ works by connecting its
user-defined elements with visual symbols. Graphics created by a
student Ben Hobgood describe some simple aspects of the C++
class as an abstract data type. The class is used in a program that
asks for the pounds of food that one wishes to feed a cow named
Betsy, and tells how many steaks can be made from her. This
graphical representation of C++ has source code and an executable
to back it up (compiled for DOS). Note: some words are in bold
typeface and indicate the definitions. The names of the files are in
italics.

This is a declaration of the class called cow or more formally
known as a class declaration. Defined as an ordinary every day
cow. Nothing fancy, just some of the basic stuff about a cow.

cow.h (the declaration of the cow class)

Fig.2. Example of a C++ header file or class declaration
This is a definition of the class called cow that was declared
above in the cow.h file. More formally known as a class definition
this file describes exactly how the abstract data type, cow, works.

cow.cpp (The definition of the cow class)

Fig. 3. Example of a C++ class definition
The abstract data type cow that we declared in cow.h, and defined
in cow.cpp is used as a data type to collect information about an
instance of the cow class called Betsy (black and white cow with
a little more character)

betsy.cpp (Implementing the cow class in a program)

Fig. 4. Example of a C++ file that uses the cow data type

This program was small and simple to start things out but the
topic could easily be used to describe many aspects of object
oriented programming. Topics such as data encapsulation could
easily be described while visually contrasting this class with
classes describing other animals, farmers or perhaps milking
cows. Inheritance could be illustrated by creating a basic cow
class in which cows bread for eating, milking, and bull fighting
could each derive from. Likewise the subject of polymorphism

naturally fits in with the topic since a classical approach is to
describe it using animals. Operators such as the input and output
operators used in this class may need a little bit of explaining for a
discussion about this class but could easily be illustrated using a
cow and its products.

The nice thing about illustrating programming concepts is that we
can decide which parts of the program to distinguish from others
instead of letting a glob of text overwhelm us. This approach may
not be great for everyone but I believe that it could help alleviate
some of the initial fear of programming and overwhelming
information overload that scares off many potential programmers
as it nearly did I.

The following are the files that would be compiled by a C++
compiler and run on an intel machine. This would follow the
graphical explanation to reassure the student that the concept
works. This element is defiantly necessary until we write a visual
compiler!

cow.h (the declaration of the cow class)

#include <iostream.h> // cout, cin functions

class Cow{
 private:
 int TwelveOunceSteaks;
 int CowPounds;
 public:
 Cow();
 void FeedCow(int);
 void MakeSteaks();
 int GetCowSize();
 int GetSteaks();
};

cow.cpp (The definition of the cow class)

#include "cow.h"

Cow::Cow(){
 TwelveOunceSteaks = 0;
 CowPounds = 0;
}

void
Cow::FeedCow(int foodPounds){
 // grain to beaf conversion is 1 to 7
 CowPounds = int(foodPounds/7);
}

void
Cow::MakeSteaks(){
 // Assuming that the entire cow can be made into steaks...
 // Number of 12 ounce steaks equals the weight in pounds times
16 ounces
 // in a pound divided by 12 ounces per steak
 TwelveOunceSteaks = ((CowPounds * 16) / 12);
}
int
Cow::GetSteaks(){
 return TwelveOunceSteaks;
}

int
Cow::GetCowSize(){
 return CowPounds;
}
betsy.cpp (Implementing the cow class in a program)

#include "cow.h"

void
main(){
 Cow Betsy;
 int poundsOfFood;
 int numberOfSteaks;
 int BetsySize;
 cout << "How many pounds of hay do you want to feed Betsy?:
";
 cin >> poundsOfFood;
 Betsy.FeedCow(poundsOfFood);
 Betsy.MakeSteaks();
 numberOfSteaks = Betsy.GetSteaks();
 BetsySize = Betsy.GetCowSize();
 cout << "Betsy weighs " << BetsySize << " pounds and can
yeild "
 << numberOfSteaks << " yummy 12 ounce
steaks!";
}

6. Discussion and Conclusions

In continuation of efforts to improve student understanding [Scott
2006], the educational environment described in this paper was
aimed to engage the students in combining both the precise and
expressive way of thinking. The authors discussed what should be
done to improve the class. First would be to find a really good
JavaScript analyzer. There was a free one on the Web but it was
not sufficient [Crockford 2002]. The problem with the Java Script
was that if there was an error in the JavaScript, it failed to do
anything, and it was not possible to easily determine where the
error was or what caused it. Because of the JavaScript issues, it
would have been better to teach it after PHP and MySQL.

Another technical issue was a problem with psftp for Windows.
The connection to the server was lost if the mouse left the
application window. The authors are still not certain what the
problem was, but this should be fixed before the class is taught
again. The important issue that was discussed but not enforced
was to have students place files for each assignment and test in
separate directories. This kind of organization helps keep the web
pages organized and makes it easier to fix problems when they
occur. Instructors insisted that students should provide their own
images to prevent copyright violation; however, some of the
students tried to obtain images from the web. Students rated the
class above average. Former interdisciplinary students found their
place in the industry and some of them presented at conferences.
Some of the student projects were selected for presentations and
at the conferences, other will be chosen for the Consortium for
Computing Sciences in Colleges, Rocky Mountain Section
Conference presentation and discussion.

References

ALLEY, T. et al. 2006. Knowledge Base for the Emerging
Discipline of Computer Graphics. The ACM SIGGRAPH
Education Committee. Full Conference DVD, a publication of
ACM SIGGRAPH.

ARNHEIM, R. 1969. Visual Thinking. University of California
Press. (Also: London: Faber and Faber, 1969). Also:
ARNHEIM, R. 1974. Art and Visual Perception. University of
California Press.
ARNHEIM, R. 1990. Language and the Early Cinema. Leonardo
Digital Image – Digital Cinema Supplemental Issue, 3-4.

BEDERSON, B. and SHNEIDERMAN, B. 2003. The Craft of
Information Visualization: Readings and Reflections. Morgan
Kaufmann Publishers, San Francisco, CA.

BERTOLINE, G. AND LAXER, C. 2002. Forum: A Knowledge
Base for the Computer Graphics Discipline, ACM SIGGRAPH
2002 Educators Program. http://www.siggraph.org/s2006/
downloads/bertoline.pdf.

BERTSCHI S. and BUBENHOFER B. 2005. Proceedings of
Ninth International Conference on Information Visualisation (iV
05) (IEEE Computer Society). Los Alamitos, CA, Washington,
Brussels, Tokyo), 383-389.

BLOOM, B. S., HASTINGS, J. T., and MADAUS, G. F. 1971.
Handbook on Formative and Summative Evaluation of Student
Learning. McGraw-Hill Book Company.

BORDER, P. M. 2006. A Data Visualization Course at an Art
School. The ACM
SIGGRAPH Education Committee. Full Conference DVD, a
publication of ACM SIGGRAPH.

BURKHARD, R. et al. 2005. Beyond Excel and PowerPoint:
Knowledge Maps for the Transfer and Creation of Knowledge in
Organizations. In Proceedings of Ninth International Conference
on Information Visualisation (iV 05) (IEEE Computer Society).
Los Alamitos, CA, Washington, Brussels, Tokyo), 76-81.

CROCKFORD, D. 2002. The Java Script Verifier. JSLint,
http://www.jslint.com/.

DUNBAR, K. 1997. How scientists think: Online creativity and
conceptual change in science. In T. B. Ward, S. M. Smith, & S.
Vaid (Eds.) Conceptual structures and processes: Emergence,
discovery and change. APA Press.

EISENBERG, M. et al. 2005. Mathematical Crafts for Children:
Beyond Scissors and Glue. In Art+Math=X International
Conference Proceedings, Carla Farsi, Ed., 61-64.

EPPLER, M. J. and BURKHARD, R. M. 2004. Knowledge
Visualization,
http://www.knowledgemedia.org/modules/pub/view.php/knowled
gemedia-67, [01/08/2007]

GRAHAM, D. 2005. Information Visualization Theory and
Practice. In Proceedings of Ninth International Conference on
Information Visualisation (iV 05) (IEEE Computer Society). Los

Alamitos, CA, Washington, Brussels, Tokyo), 2005, 599-603.

GUILFORD, J. P. 1967. The Nature of Human Intelligence.
McGraw-Hill.

GUILFORD, J. P. 1968. Intelligence, Creativity and their
Educational Implications. Robert Knapp.

HARRIS, A. 2004. PHP 5/MySQL programming. Thomson

Course Technology.

HART-DAVIS, G. 2005. HTML QuickSteps, New York,
McGraw Hill.

HARTMAN, N. W. and BERTOLINE, G. R. 2005. Spatial
Abilities and Virtual Technologies: Examining the Computer
Graphics Learning Environment. Proceedings of Ninth
International Conference on Information Visualisation (iV 05)
(IEEE Computer Society). Los Alamitos, CA, Washington,
Brussels, Tokyo), 992-999.

HARTMAN, N. W. & G. R. BERTOLINE, 2006. Virtual Reality-
based Spatial Skills Assessment and Its Role in Computer
Graphics Education. In The ACM SIGGRAPH Education
Committee. Full Conference DVD, a publication of ACM
SIGGRAPH.

KLEIN, S. 2005. Knowledge Visualization in Practice:
Challenges for Future Corporate Communication. In Proceedings
of Ninth International Conference on Information Visualisation
(iV 05) (IEEE Computer Society). Los Alamitos, CA,
Washington, Brussels, Tokyo), 70-75.

MATZKO, S. and DAVIS, T. 2006. Using Graphics Research to
Teach Freshman Computer Science. In The ACM SIGGRAPH
Educators Program Panel, Full Conference DVD, a publication
of ACM SIGGRAPH.

MOONEY, D. 2006.
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10731/33854/
01612097.pdf

NIEDERST, J. 2001. Web Design In a Nutshell: A Desktop Quick
Reference 2nd Ed. Cambridge.

PALAZZI, M. et al. 2006. Designing Collaborative
Interdisciplinary CG Experiences in the Curriculum. In The ACM
SIGGRAPH Educators Program Panel, Full Conference DVD, a
publication of ACM SIGGRAPH.

POLLOCK, J. 2004. JavaScript: A Beginner's Guide, 2nd Ed.,
McGraw Hill/Osborne.

SCOTT, T. 2006. In-Class Projects to Enhance Student
Understanding. The Journal of Computing Sciences in Colleges,
21, 3, 147-153.

STERNBERG, R. J. 1991. Higher-order reasoning in postformal
operational thought. In: Merlin C. Wittrock and Eva L. Baker
(Eds.), Testing and Cognition. Prentice Hall, pp. 31-39 and 74-91.
Also:
STERNBERG, R. J. and DAVIDSON, J. (Eds.). 1992.
Mechanisms of Insight.. MIT Press.

STERNBERG, R. J. and DAVIDSON, J. (Eds.). 1991.
Conceptions of Giftedness. Cambridge University Press.

TUFTE, E. R. 1983. The visual display of quantitative
information. Graphics Press.
TUFTE, E. R. 1990. Envisioning information. Graphics Press.
TUFTE, E. R. 1997. Visual explanations. Images and quantities,

evidence and narrative. Graphics Press.

URSYN, A., MILLS, L., HOBGOOD, B. and SCOTT, T. 1997,
Combining Art Skills with Programming in Teaching Computer
Art Graphics. In Proceedings of ACM SIGGRAPH 97, Computer
Graphics, 25, 3 (July 97).

URSYN, A.1997. Computer Art Graphics Integration of Art and
Science. Learning and Instruction, The Journal of the European
Association for Research on Learning and Instruction (EARLI), 7,
1, 65-87.

URSYN, A. 1991. The Use of Computer Art Graphics in Art and
Science. In Abshere, K. Discovery Through Experimentation, Art
and Educational Computing in Secondary Schools. In Computer
Graphics, 253, Proceedings of ACM SIGGRAPH 91 Educator's
Program.168-171.

WANDS, B. 2006. Right Brain/Left Brain: Balancing Digital Art
Curricula. In The ACM SIGGRAPH Educators Program Panel,
Full Conference DVD, a publication of ACM SIGGRAPH.

