
 Lessons Learned from an ARTS / CS Game Design Collaboration

Torben Lorenzen Lorenzen@bridgew.edu
Department of Math and CS Bridgewater State College

Abstract

The first iteration of a Game Design collaboration between ARTS
(modeling in Maya) and CS (scripting the Torque Game Engine)
is described. The missteps of the collaboration are chronicled and
a list is provided of the lessons learned to create a successful
collaboration. A specification for developing textured game
models with animations is included.

1. Game Design: Pre-Collaboration

The first semester that Game Design was taught (using the
500,000 line Torque Game Engine in a networked PC lab), the
author proceeded cautiously and had the class download
MilkShape avatars from the web and modify them. The games
had no Bots and no movable models. Two students built a castle
and a haunted house (modeled in QuArK) in which the class could
stage team warfare with each student controlling his own avatar.
Within this limited framework, each programming team of
students succeeded in designing and implementing a game of their
choice. Additionally each student was responsible for mastering a
piece of software and creating an avi tutorial that was stored in a
central library for present and future students to access. Thus each
student became a consultant to the class in his area of expertise.
The covered software included MilkShape (a modeler),
CharacterFX (provides inverse kinetic animations),
ms2dtsExporterPlus (converts MilkShape models to the dts format
required by Torque), ShowTool (to debug dts models),
LithUnwrap (skinning), Audacity and OpenGL (sound), QuArK
aided by Python and Hammer aided by Wally (level design), and
Terragen (sky box design).

2. Collaboration: The Plan

The second semester that Game Design was to be taught, the
ARTS department was offering a digital modeling course (using
Maya in a Mac lab). A collaboration was formed between the
ARTS and CS departments in which the ARTS department was to
model avatars and moveable models such as catapults and
drawbridges and CS would write Torque script to control those
models. The levels were to be created using Hammer and
purchased components from www.Garagegames.com.

The initial four collaborators (an ARTS student, ARTS
professor, CS student, and the author – a CS professor) met
weekly for two months to brainstorm how to design the upcoming
collaboration. The group decided to elaborate one of the earlier
games set in the medieval/mythical past by expanding the
rudimentary castles and including drawbridges, oaken doors,
collapsing walls, cauldrons of boiling oil, and movable battering
rams, catapults and siege towers. Since CS Game Design was a
yearly offering and ARTS Digital Modeling was offered each
semester, the collaboration would have to begin in two months or
be postponed for an entire year. After the ARTS duo promised to
create a model within a month, the author agreed to teach a
collaborative version of his CS course with two months lead time.

3. Lesson One: Set the Collaboration Start Date

The artists produced a Maya Mac model a month later but when
exported to the Torque Game Engine the animations were
excluded. It took another month for the two artists to create a
working export path (Mac Maya to PC Maya to
maya2dtsExporter.mll) and the author’s Game Design course
began with one untested ARTS model.

Lesson 1: Do not schedule the start of the collaboration until
ARTS has produced a prototyped model complete with unrefined
animations and CS has executed those animations in the game
engine. Completing these two milestones will demonstrate to each
partner that the other is competent to begin the collaboration.

4. Lesson Two: Prescreen Models

The first assignment for CS was to learn the basics of the $35
MilkShape modeler and to prototype a textured model (with a root
and a death animation) that would fit in a medieval world. It was
acceptable for the prototypes to be quite crude and for animations
to consist of only three key frames. Completing this free form
weeklong assignment prepared the CS students to communicate
with the ARTS students and produced two dragons (one beautiful;
the other mistakenly described by the author as a plane), one
Mario jumper, a snowman that threw snowballs formed from
snowman belly, a drawbridge, a shield, a sword, a mace, a
cauldron (sans boiling oil), a siege tower and a beautifully
detailed battering ram complete with curved ram’s horns.
Interestingly enough, the best CS models were as good as later
ARTS models.

Lesson 2: Prescreen the CS model choices to produce a higher
useful yield of prototypes. Additionally, modeling simple
weapons can be discouraged; they can be purchased as part of a
medieval weapons pack at
www.garagegames.com/pg/product/eula.php?id=76.

5. Lesson Three: Supply Model Spec Sheets

One of the CS students modeled his creation using a month-long-
trial version of Studio Max and exported the model to MilkShape
where he then added the animations. (ARTS did not want to
follow a similar sequence with Maya). Screenshots of the
MilkShape prototypes were passed to the ARTS students with the
intention that the screenshots should serve as initial design
documents for the ARTS students to use in preparing Maya
prototypes. After all, a picture is worth a thousand words, right?

Lesson 3: Wrong! Supply a thousand words to accompany each
screenshot. The professors must prepare a standardized spec sheet
(see the sample at the article’s end) for each of the approved
models and these sheets must be distributed to both classes.

6. Lesson Four: Teach ARTS How to Prototype

Those promised Maya prototypes never arrived. Perhaps ARTS
did not want to hand off “inferior” products to CS. Perhaps the
artists felt that their models were 95% complete – that they were
only one little tweak from perfection (Sound familiar?). Perhaps
making prototypes and exporting them would have increased the
workload for ARTS. In any case, CS sat on their collective hands
for two weeks – not willing or not understanding how to write
script to interact with nonexistent models that had shaky specs at
best.

Lesson 4: The CS professor must schedule a two hour block of
time to explain the necessity for prototyping to the ARTS
students. The ARTS and CS professors must coax prototypes out
of the ARTS students in this two hour span.

7. Lesson Five: CS Creates Complete Prototypes

Lesson 5: The first CS assignment must include three-key-frame
versions of all the animations from the spec sheet and a model and
animation export to Torque (using the ms2dtsExporterPlus from
http://chumbalum.swissquake.ch/ms3d/download.html). In this
manner CS can begin to test script code on their own primitive
models and primitive animations while ARTS creates Maya
model prototypes.

8. Lesson Six: ARTS Does Not Adequately Test

A month after the semester began, the beautiful ARTS models
finally arrived. The exquisite goat-man avatar sunk up to his waist
in the ground and some of his animations were off axis by 90
degrees and bullets flew through him. All avatars could walk
through the new gorgeous catapult and its wheels were
transparent. The projectile that the catapult tossed disappeared
after firing. Avatars fell through the new drawbridge. The stairs of
the siege tower floated ten feet above the ground out of reach of
the avatars. The castle door had a great death animation, but no
open or close animations. Because the door had no door frame, it
was hard to seamlessly attach it to the castle. The battering ram’s
root animation was judged obscene by all who saw it. The
sword’s sheath animation was cyclical but no sword ever sheathed
an enemy to death.

It was the professors’ combined inexperience that was
responsible for this situation. The author had downloaded working
models from the web and had only done rudimentary modeling in
MilkShape. The ARTS professor had modeled before but had no
knowledge of the many additional requirements that gaming
would require of the models. This blissful ignorance gave way to
a semester long sequence of panicky fire fighting.

The models’ failings were listed by the CS students as they
incorporated the ARTS models into the Torque game but there
was a possibility some failings could be a consequence of
scripting errors. So case by case, it was necessary to work with
the ARTS and CS students involved and to determine if the
problem was a modeling problem (ARTS to fix) or a scripting
problem (CS to fix). In either case the professor was often
challenged by the offended student and had to prove to the
student’s satisfaction that it was his problem before he would
honestly work on it. In those cases where it was a modeling
problem, the ARTS students learned that their beautiful art did not
work. Artists have heard the phrase “That doesn’t work for me” as
an aesthetic judgment but art not working in an absolute sense
was a foreign concept to them.

Unfortunately testing, debugging and backing up were also
foreign concepts to ARTS students. One ARTS student lost his
Maya version of a beautiful drawbridge and didn’t have time to
recreate it. Several ARTS students did not do a “proof of concept”
and spent weeks creating different avatar skeletons provided with
one animation each with the untested (and incorrect) assumption
that these single animations could later be shared amongst avatars
with different skeletons.

Lesson 6: ARTS students are probably unaware of basic CS
testing principles and will not magically master them in one
month.

9. Lesson Seven: Create a Test Station for ARTS

ARTS did not adequately test their models so that work fell to the
unwilling CS students. As the ARTS students fixed one bug in a
model, a different one was sometimes introduced in the export
process. So the increasingly resentful CS students were forced to
participate in a debugging cycle with the ARTS students. And the
ARTS students didn’t appreciate this process one bit either.
Things got so bad that some CS students asked to create the
models themselves. In hindsight it made perfect sense that ARTS
students would know as few CS testing concepts as students
beginning a CS1 course.

Lesson 7: Create an ARTS test station in the CS lab. This station
runs a “game” that is set up to accept all the models agreed upon
on the spec sheets and to test their animations. The player avatar
can shot at the models and tests collision meshes. By changing the
distance between the avatar and model, Level Of Detail (LOD)
can be verified. Together the two professors must test each model
in this game environment and only certified models may be
passed on to CS.

10. Lesson Eight: Create a Backup Plan

When the ARTS models were finally error free, each CS student
wrote script to control one model. However there was not enough
lead time to integrate these independent modules into a working
game. This disappointed everyone and surprised ARTS. As
modeling deadlines slipped, ARTS was repeatedly warned that CS
required lead time to complete the scripting. ARTS had little
knowledge of scripting and didn’t understand why it took CS so
long to take functioning models and put them into a game. The
basic problem was that CS did not make a major scripting effort
until ARTS completed their models. It is imperative that the
modeling and scripting efforts proceed in parallel. Implementing
the lessons included in this article will facilitate that required
parallel development.

ARTS had counted on submitting a working game to the
school’s art show to showcase their models and to build interest in
the new digital modeling course. This failing was a major blow to
the strategic plans of the ARTS professor.

Lesson 8: There must be a backup plan in case all the models are
not finished or a complete game is not produced. CS can reuse
models from previous semesters or download internet models.
ARTS can produce 3D prints of their models for a sculpture art
show.

Model Specifications

Student Name: ____________________ Email: __________________________
Model and Folder Name: ___
Prototype delivery date: ____________ Model delivery date: ______________
Model and Folder Name: ___

In that folder, please place the following:
 Maya Model Name: (ModelName.ma or ModelName.mb)
 Torque Model Name: (ModelName.dts)
 Animation Files: (??????????.dsq)
 Texture Files (use .jpeg unless you use .png to achieve transparency)

Please check that the texture files are usefully small and each has a size of
 8x8 16x16 32x32 64x64 128x128 or 256x256

Texture Name

Model Part that is textured Texture Size

Animation Name

Description Does it Cycle?

Root (required) yes
Death (required) no

□ Polycount below 2000 triangles □ Animations tested in Torque Show Tool

□ Collision Mesh (Col) tested in game □ Line of Sight Mesh (Col_LOS) tested

□ LOD (Level of Detail) (detail2, detail64, detail 128) tested in game

□ No concave surfaces (no dimples or hollows).
 For example, a catapult arm must end in a closed drum – not an open spoon.

