
Live graphics gems as a way to raise repositories for computer graphics

education

Johannes G̈orke∗

WSI/GRIS University of T̈ubingen
Frank Hanisch†

WSI/GRIS University of T̈ubingen
Wolfgang Straßer‡

WSI/GRIS University of T̈ubingen

Abstract

This contribution presents two technologies, code-based interac-
tivity and server-side compiling, that add value to an educational
repository and address its difficulties in achieving a critical mass of
submissions. It is part of current efforts in the computer graphics
community to collect, preserve, and share educational material. We
propose a novel repository service introducing ”live” graphics gems
to the material, i.e. modifiable program listings with corresponding
interactivities that are compiled and versioned server-side. That
way, repository material evolves on the fly. Authors not willing to
submit their material as open source are given a granular source
control. We describe implications, e.g. a common, repository-
driven content markup, didactics of code-based interactivity, and
crucial technical services and tools. Prototype implementations and
showcases are included.

Keywords: educational repository, communities, interactivity

1 Introduction

The computer graphics (CG) educational community has originated
the Computer Graphics Educational Material Source (CGEMS), a
worldwide refereed repository for sharing educational contents in
CG-related curricula. It was presented to a major public in 2004
[Figueiredo et al. 2004] and now calls for submissions in order to
establish the repository’s user community. In this contribution, we
develop a pair of technologies to attract authors, code-based interac-
tivity and server-side compiling, and present prototype implemen-
tations.

The difficulty in raising a repository is the critical mass of sub-
missions it has to achieve in order to become valuable. Currently,
the only reward for CGEMS authors to carry out the painstaking
process of modularizing educational material [Spalter and van Dam
2003] is peer recognition. It would be more sound for authors to
contribute to the repository if they would be given an added value
besides credit, for example a significant speedup in authoring and
facilities to convert their work to a variety of forms. We summa-
rize the current status of CGEMS and investigate other reposito-
ries’ concepts in Section 2. In particular, we describe how sim-
ple XML-based markup and transformations would form a proper
base for authoring, interlinking, and publishing educational mate-
rial with mathematical and graphical-interactive content. As a re-
sult, the repository would supply authors with valid templates that
accelerate development and production of courses, modules, and
teaching gems.

Many valuable materials exist and are ready-to-use. In that case, au-
thors will accept an additional markup only if the repository returns
considerable, didactic improvements. A possible starting point is
the fact that in CG-related domains programming effectively deep-
ens the understanding of theory, but is always carried out separately.

∗e-mail: goerke@gris.uni-tuebingen.de
†e-mail: hanisch@gris.uni-tuebingen.de
‡e-mail: strasser@gris.uni-tuebingen.de

Therefore, we have developed a new didactical element, code-based
interactivity, which introduces ”live” Graphics Gems to the mater-
ial. Our approach essentially adopts the concept of combining the
advantages of textbooks, technical journals, source code implemen-
tation, and discussion boards (as argumented e.g. in Heckbert’s
foreword to Graphics Gems IV [Heckbert 1994]); however, for the
first time source code is integrated directly into the material, and
reloaded dynamically into the corresponding visual or interactivity.
We motivate the didactics of code-based interactivity in Section 3.

Technically, the repository provides an additional server-side com-
piling service. We discuss architectural requirements for reposito-
ries with such a service in Section 4, and present a prototype imple-
mentation. In that context, we broaden the denotation of ”source”
to media other than software, e.g. text sources, XML-based graph-
ics, and Flash objects. Our approach allows for a new ”partly
open source” licensing model, which can be applied for authors
that would otherwise not submit their work due to reasons of copy-
right or privacy. The model presents only the source for a desired
learning objective, and blends out any other material’s source. It
supports privacy at a maximum granularity, e.g. contributing no
source at all except for a single algorithm.

We illustrate our ideas in Section 5 with material teaching sig-
nal processing. Our prototype repository is available online at
http://www.gris.uni-tuebingen.de/gris/ilo and offers a guest account
for experiencing code-based interactivity embedded into theory to-
gether with server-side compiling.

2 Related Work

The CGEMS project [Assunção et al. 2002] arose from fruitful dis-
cussions around, during, and after the Eurographics/SIGGRAPH
workshops on Computer Graphics Education in Bristol (CGE’02)
and Hangzhou (CGE’04), from an idea that originated in Graph-
ics and Visualization Education Workshop [Cunningham 2000] in
Coimbra (GVE’99). The current server version supports online
management of reviewing and publishing workflows [Figueiredo
et al. 2004]. While the journal-like publication model aims at lever-
aging content quality and peer recognition, the planned peer collab-
oration functionality will support user feedback and versions.

The publishing and reviewing processes of educational material dif-
fer from the ones of research papers. The issue is known and is
handled by different review forms and after-publishing processes
[Knox et al. 1999]; in short, the after-life of published educational
material in classroom and other scenarios implicates that the repos-
itory must not freeze submissions into final versions, but support
its community in evolving the material. Educators usually adapt
the material’s design, language, and terminology to their specific
needs, and modify parts of the content, e.g. by replacing some
slides, examples, or exercises. Even more important with respect
to the anticipated use by educators, technical updates are required
as software environments change constantly. At CGE’04, we there-
fore discussed the CGEMS peer-reviewing process for material ver-
sions.



Figure 1: A visual proof for the orthogonality of harmonic sinusoids. Users may multiply specific waves by scripting the interactivity from
theory. Here, the highlighted sentence ’two arbitrary harmonics’ and thethree rows in the formula resolve corresponding scripts. Theory,
including mathematics, therefore provides a common content markup (XML/MathML).

The use of a coherent XML schema for content markup is exem-
plified, e.g. by Connexions (http://cnx.rice.edu, [Baraniuk et al.
2004]), a collaborative module repository launched in 1999 at Rice
University. Here, we see some state-of-the-art concepts realized
that let the repository grow to about 2200 freely available, educa-
tional modules in diversified domains. The Connexions markup
language (CNML) defines a common ground for authoring, instead
of letting each author choose the markup language. Currently, no
standard markup of educational material exists, and considering the
400 DocBook [Walsh and Muellner 1999] elements, many authors
will choose to define their own markup scheme (XSD) for organiz-
ing content (abstract, sections, theorem, proof, example, equations,
programs, etc.), knowledge (concept, skill, etc.), and didactics (ex-
ercise, homework, test, etc.). Without a shared markup language (or
at set of sanctioned languages with matching transformations) the
repository would have no means for processing its material. Differ-
ent modules could hardly be interlinked and sequenced. Connex-
ions in turn may switch material presentation or publishing format
simply by switching appropriate styles (XSL) and transformations
(XSLT). Note that DocBook compatibility should be considered,
as this automatically makes a large set of transformations to Web
pages, PDF, slides and RTF (Word) available. Besides providing
authors a rapid development process and a variety of publishing
formats, the Connexions repository offers services like a course
composer, annotation and printing facilities, and a browser plug-in
superseding hyperlink navigation by user-defined sequencing and
navigation, which enables users to define and follow paths through
the material, i.e. courses and curricula.

A second line of tactic in getting authors to contribute to the reposi-
tory becomes evident when we take into account the characteristics
of educational material specific in the CG domain. State-of-the-art
markup covers, at best, accurate rendering of formula (MathML),
graphics (SVG, X3D), and parameter interactions that trigger com-
putations (MeML [Wang et al. 2003]). Direct manipulation of
graphical content, either view or model, cannot be described. In-
stead, proprietary scripting instructions are embedded into XML
documents to connect text and formula with visuals and interactiv-
ities. Scripting is mostly used for illustration of specific parameter

setups, but hardly ever rearranges inner parts of educational ma-
terial or transfers them to other material. A repository might ex-
press such cross-material actions by visual scripting [Hanisch and
Straßer 2003a]. Deeper modifications are performed in the ma-
terial’s source, e.g. in Java or C++ source files and correspond-
ing makefiles and compilers, but also in the case of text, graph-
ics, and slides (e.g. production formats LaTeX, Word, MathPage,
Photoshop, PowerPoint, and Flash FLA versus publishing formats
PDF, DHTML, and Flash SWF). Repositories like CGEMS or Mer-
lot [Smith-Gratto et al. 2002] consequently include the material’s
source - as an option, as some authors might not be appealed with or
simply are not be allowed to distribute the material’s source. How-
ever, opposing users with source code and a makefile introduces
additional technical hurdles and, in many times, requires users to in-
stall additional software packages. The proposed server-side com-
piling directly integrates into other repository services [Owen et al.
2000] like versioning, annotations, and reviewing, and can be im-
plemented, e.g. as CGI, servlet, or Web service.

Our proposal transforms the material’s source into a didactic ele-
ment. In the case of software material, we result in code-based
interactivity, which can directly be integrated into theory and dis-
cussion. In that way, it extends Glassner’s idea of Graphics
Gems (http://www.graphicsgems.org, [Glassner 1990]), which was
founded 1990 and later continued as the ACM Journal of graph-
ics tools. While each graphics gem represents a separate pack-
age with sources, makefile, and installation help, we merged both
educational and code repositories, which enables the embedding of
modifiable source code into modules, compiled server-side and re-
quiring only browser functionality.

Our show case was inspired by Brown’s Exploratories [Laleuf and
Spalter 2001] and T̈ubingen’s applet-based CG course [Klein et al.
1998]. We have developed interactive materials that recreate the
look of a classic textbook, but make the best possible use of interac-
tivity. Figures are interactive illustrations [Beall and Hughes 1996],
i.e. software elements without buttons, input fields, or other wid-
gets. Parameters are directly manipulative and further functionality
can be triggered from theory or programmed at place. Didactics
support visual cognition and offer visual proofs [Brown 2002].



3 Code-based interactivity

Code-based interactivity features three educational concepts, a (1)
visual or interactivity illustrating (2) theory with (3) real source
code. It turns the ”textbook with program listings” approach to dy-
namic Web pages representing program listings as an interactive ed-
itor, and reacts to user input by compiling the visual or interactivity
server-side. In the following, we describe didactics of code-based
interactivity; the technical framework is given in Section 5.

The idea behind a textbook with program listings is to enrich the
high-quality explanation of an algorithm with an implementation
[Heckbert 1994]. This is true especially for CG-related domains,
where many users tackle with getting pseudo-code description ac-
tually to work. Research papers focus theoretic aspects and leave
out ”easy” programming code, i.e. practical details a user must
face. Textbooks and online journals therefore provide an additional
Web page with discussion boards and user annotations, and there
are many other, unofficial boards for source code discussions. Yet,
they remain unrefereed, and are not interlinked with theory.

At first, embedding code-based interactivity into theory introduces
an interactive element. Users experience the actual implementation
of an algorithm, and may manipulate essential parameters. Sophis-
ticated interactivities (microworlds [Papert 1980]) further allow for
modifying the underlying model, that is, internal parts and struc-
ture. The interlinking of interactivities and theory can be performed
by scripting. Consider, for instance, the interactivity in Figure 1,
which serves as visual proof for some mathematical theorem. We
have modified the traditional didactics, a theorem-proof-example
sequence, by replacing the example with an interactive illustration.
Further, we have provided proper XML-based markup for the the-
ory, including the mathematical equations (MathML). Users may
now select the theorem and specific parts of the equations to re-
arrange the interactivity and illustrate the described concepts visu-
ally. Educators may use such a module to build a visual cognition
of the learning objective first, and then provide the correct proof.

Secondly, material now includes real source code. As we will
demonstrate in our showcases, material can be presented as stan-
dard textbook with program listings. The only difference is that
users can manipulate the program listing, and so the interactivity,
at place. Authors therefore markup source code, which is similar
to other content markup. Normally, only parts of the source will
be included into a teaching module; parts that are useful for some
cognitive or technical reason. Further code can, e.g. be provided
on demand. Authors may declare their interactivity as open source,
or restrict access for parts with non-didactical or contra-productive
value. Learners, on the other hand, may start their programming
with already working source code, without having to interrupt their
learning process.

Code-based interactivity brings with new didactics. Educators may
e.g. create multiple choice tests with programs. Besides select-
ing the correct algorithm, the learning objective could include code
debugging and development. Algorithms can intentially be pre-
sented false, incomplete, or not optimized. As the source is com-
piled server-side, user input can be tracked and analyzed. Consider
further user collaborations: the authoring workflow stores and ver-
sions each source code modification in the repository (see Figure
2). This potentially lets users share their work with peers. For ex-
ample, an educator executing a course could ask students to check
out a specific version, work it over, and check in their own pro-
posal. Group members could create and discuss intermediate ver-
sions, again stored server-side. The technical framework therefore
has to provide user management, rights and roles, and differentiated
versioning. Note that repository material evolves on the fly.

Server Side
Compile

Subversion

Repository
Source

Material

Figure 2: Code-based interactivity includes real source code. User
modifications are compiled server-side and versioned, which allows
users for discussing custom developments, and sharing evolved ma-
terial by means of the repository.

Code-based interactivity applies to pure visuals, too. As above,
the user works with the visual’s source, performs some cognitive
actions, and recreates the visual. It is not required to present the
visual as software – an alternative approach would compile the tar-
get server-side, convert it to the desired publishing format, and up-
date the module. An example: considering SVG-based graphics,
we could allow the user for modifying the object of interest in the
XML source, compile the full source server-side, and then feed it
back to the browser’s SVG plug-in. Alternatively, we could convert
the compilation server-side to an image representation, and update
the material accordingly. The latter approach has advantages in the
case of exercises and tests, as it becomes possible to hide the mate-
rial’s source.

4 Repository support for code-based inter-

activity

Repositories are collections of shared data, stored either in data-
bases or file systems. Educational repositories in turn provide ma-
terial usable in classroom or for self-studies, supporting a distrib-
uted, networked user community to work with, share, and evolve
it. Repositories are well established as a communication and infor-
mation exchange tool in the scientific community. They represent
digital libraries offering publishing, quality assessment, distribu-
tion and licensing of modules and provide uniform resource names
(URN) for referencing. State-of-the-art functionality [Owen et al.
2000; Figueiredo et al. 2004] includes organization, categoriza-
tion, and search and browse facilities, together with management
of users, rights, and roles. Evolving content is further supported by
version control services, community ratings and annotations. Some
repositories offer material templates, style sheets, and transforma-
tions in order to enlighten authoring and publishing processes, and
to enforce or recommend a common content markup.

URNs guarantee valid referencing of repository material in text-
books and scientific papers over years. In the fast-changing Web,
it is advisable for an educational repository to provide not only an
URN, but store the referenced material itself. Following typical
publishing mechanism, authors categorize their submissions them-
selves. The repository deploys this information for indexing and
makes it available for browsing and advanced searching.

User management with rights and roles grants different levels of
access to the material. Educators for example should be able to
access material in publishing formats, whereas authors or licensed
developers might be granted to access the material’s source. On



the other hand, suggested solutions should generally be locked for
learners.

Modern repositories work like content management systems. The
authoring process is facilitated by requesting user input step-by-
step: starting with module creation, markup and upload to the
repository, users may evolve material and submit new versions. Im-
provements may include errata, translations, extensions, and the in-
clusion of new media, e.g. visuals or interactivities. The reposi-
tory therefore reverts to version control mechanisms or a database
with versioning facilities. Versioning even supports rapid content
creation as it allows authors for uploading materials incrementally.
Offering peer reviewing for versions provides instant feedback.

We may apply this repository functionality also to source code,
which can be processed like other material, i.e. submitted, re-
viewed, published, evolved, and versioned. In addition, we pro-
pose two repository extensions, an online source editor tool and
a server-side compiling service. Server-side compiling processes
and compiles the modified source to a publishing format, eventu-
ally including required binary libraries, and updates the material
accordingly. The source editor replaces the static program listing
by an interactive input field with, e.g. convenient syntax highlight-
ing and indenting. We will present technical details in the following
section. In essence, our approach introduces no extra hurdles, i.e.
software installation or additional workflows, for end users.

Server-side compiling permits for a ”partly open source” licensing
model handling privacy and copyright issues. The model presents
only the source for a desired learning objective, and blends out any
other material’s source.

5 Technical Framework

On the technical side, we had to decide a) which programming lan-
guage we want to support, b) which software we needed on the
server as well as on client-side, and c) how we organize the client-
server system. We had to specify which markup to use in our meta-
language and how the sources of code-based interactivities had to
be organized. We provide a prototype repository that accomplishes
our requirements: it includes a Web-based editor, server-side com-
piling and the integration of a version control system.

5.1 Content markup

A markup language categorizes and structures the content of ma-
terials in the repository. By suggesting a defined DTD or XML
schema, our repository may generate a presentation suitable for the
different forms of publishing format: it may generate HTML, PDF,
SVG, or other formats when given an adopted transformation style
sheet. We have chosen an approach similar to MeML [Wang et al.
2003], a markup language that was designed to support mathemat-
ics (formulas) and calculation on the web. A brief example shows
how a Java applet is included in the authoring context:

<interaction target="applet" id="dft1">
<name>dft</name>
<code>applets.dft.MainClass</code>
<codebase>classes/</codebase>
<width>850</width>
<height>250</height>

</interaction>

This marks up an applet as an interactive object. The interaction
block is stored in the repository with a unique identifier (”dft1”).

The name and the starting main class define the applet’s name
and where the startup method is found. The location of necessary
classes and libraries is defined by the ”codebase” tag. Further tags
may concern the layout, e.g. set the applet’s appearance.

A second example shows how source code manipulation of interac-
tivities may be included:

<code type="compile" target="dft1" id="dft2">
<main>MainClass</main>
<package>applets.dft</package>
<classes>DFT,BarsGraphics</classes>
<version>1.0</version>
<source class="DFT">
<methodname>dft</methodname>
<signature>

<parameter number="0">int</parameter>
<parameter number="1">double[]</parameter>
<parameter number="2">double[]</parameter>

</signature>
</source>

</code>

During the stylesheet translation, the ”code” tag, which targets the
previous applet, triggers the generation of an HTML form. The
”main” tag and the ”package” tag define the main class respectively
the Java package name reflecting the directory structure of the ap-
plet sources. The ”source” tag defines the class file (here: ”DFT”)
as attribute, and its sub-nodes declare the exact method name and
its signature (here: ”dft(int,double[],double[])”). The class file in-
cluding the source code should appear in the class file list of the
”classes” tag. The ”version” tag finally tells the repository which
revision to checkout from the version control system.

5.2 Source code

Although the approach covers also media from text, slides, and
graphics, our discussion will target mainly graphical-interactive
material available as software programs. Here, publishing formats
are represented by class libraries, for example directories with bi-
nary files, Java archives (JAR), dynamic link libraries (DLL), or
dynamic shared objects (DSO). We prefer dynamic loading as this
potentially lets users recompile and plug-in modified objects at run-
time.

Only little effort is required from authors to turn their educational
material into a code-based interactivity. In particular, the material
source must be separated into two parts; a source package available
for server-side compiling and the remainder that is already com-
piled to a publishing format. Parts of the source package that will
represent program listings in the material must then be marked up.
For our Java-based show case, we simply have used JavaDoc-style
markup tags commenting a class or method.

A second prerequisite originates from our goal to replicate the clas-
sic textbook look and provide visuals and interactive illustrations
without extra UI. Functionality going beyond direct parameter ma-
nipulation must therefore be scripted from other material parts.
Scripting instructions are embedded as event handlers into text,
graphics, and formula. Usually, the scripting target provides public
parameters and methods that may be used in scripting. A fallback
of this approach is that scripted material tends to become obscured
if modified by different community members. An approach that
encapsulates scripting instructions into components and organizes
them by the repository [Hanisch and Straßer 2003b] might have ad-
vantages with respect to the embedding, interlinking, and update of
scripted material.



5.3 Source editor

We required a technical solution for assisting users in the manipula-
tion of program listings embedded into Web pages, even if they only
have a browser with JavaScript at their disposal. The Muze project
(http://www.muze.nl) has developed a free, Web-based editor that
integrates JavaScript programs into the Web page to perform syntax
highlighting and indenting for standard text fields in HTML forms.
This a big step in terms of convenience compared to the plain text
forms provided by the (X)HTML standards of the W3C.

Syntax highlighting and indenting already offers the most needed
functionality of integrated development environments (IDE).
Whereas IDEs additionally feature code completion, integrated
documentation and debugging, the installation of an IDE is not ad-
visable due to different reasons: IDEs are complex software prod-
ucts and require users to download a lot of data – but not every user
has a high-speed access to the internet. The installation of an IDE
is often complicated and assumes administration rights – which we
cannot rely on. Third, an IDE is in contrast to a Web browser not in-
herently prepared to connect smoothly into our repository, whereas
our proposal integrates both the authoring process and source code
manipulation into a single Web page. At last, the sources of interest
are not complete software packages but often very short, mathemat-
ically based algorithms with a length of about 10–20 lines. So we
talk about algorithms that are well manipulative in a syntax high-
lighted text form.

5.4 Repository

The first prototype of our repository is based on Apache Group’s
Jakarta Tomcat project (http://jakarta.apache.org). Tomcat is used
as the official reference implementation for the Java Servlet
and JavaServer Pages (JSP) technologies. As we have proto-
typed our repository in JSP, the deployment of Tomcat is ob-
vious. Tomcat allows for integrating additional server software
like Cocoon, another widely used project of the Apache Group
(http://cocoon.apache.org). Cocoon is a Web development frame-
work based upon two major concepts: separation of content, layout,
and presentation by the use of XML in conjunction with XSLT, and
as secondary concept the notion of a sitemap as central control ele-
ment that steers pipelines, which in turn compose requested pages
of the Web application.

In fact, our repository has to cover two different requirements: on
one side, we want to manage users, rights, and roles, steer our
version control system efficiently, and compile source code on the
fly; on the other side, we handle XML based documents that need
to be transformed into user readable formats like HTML or PDF.
We covered the first requirement straight-forward by implement-
ing JSPs and Java servlets. The translation of our XML source
pages by XSLT stylesheets necessitates Cocoon if implemented on
the server. Here, we prefer an offline approach by deploying an effi-
cient stylesheet processor like Xalan (http://xml.apache.org/#xalan)
– the same processor that is also integrated into Cocoon for server-
side stylesheet processing. This assures for coherent preparationof
all needed XSLT stylesheets that will be deployed by Cocoon in the
near future.

5.5 Server-side compiling

The compilation process is implemented completely server-side.
The user adopts the source code accordingly, and then uploads his
modification. On the server, a new version of the source file with

regard to the user’s identity and the version is generated, replacing
simultaneously the original source with the user’s proposal. Differ-
ent versions of user runtime environments are supported by setting
flags for the compilation process in order to generate compatible
class files. The compilation is invoked on the fly, when the reposi-
tory is receiving new input. Compiled code is stored on the server
in binary files. The user is given a new Web page, where he may
take a look at the new version of the interactivity. If the compiling
process fails due to programming faults, resulting error messages
are displayed on the Web page, too.

For the compilation process, each user has to log-in to the reposi-
tory. This is not only for rights management but also for identifica-
tion purposes: for each user the latest version of the source code has
to be activated and preloaded. The compilation itself is realized by
invoking a Java compiler from within the JSPs on the dynamically
generated source class.

5.6 Source code versioning

Managing lots of code from different users with the need to restore
old versions implicates the use of a version control system.

Commercial and free version systems are available. We have cho-
sen Subversion [Collins-Sussman et al. 2004] as version control
system for the following reasons. Subversion is freely available on
different operating systems. It is a successor of CVS, the world’s
most used versioning system. In contrast to CVS, Subversion of-
fers directory versioning, true version history, atomic commits, ver-
sioned metadata, different network layers, consistent data handling
and efficient branching and tagging. For our purposes some fea-
tures are of special interest: branching allows for handling different
development branches with same files efficiently. Connectivity to
the Subversion server from within of our repository is achieved by
a freely available Java API (http://www.tmatesoft.com). The Java
API offers the same functionality as the Subversion command-line
client.

Our prototype solution commits each source code manipulation into
Subversion. When manipulating source code for the first time,
the server copies the original class files, including the modified
source passage, into a newly created directory named the user’s
login name. All Java class files now have to be adapted to this
new path, as the package name in Java classes reflects the directory
structure where the class file is stored. After this renaming proce-
dure and the replacement of the original code by the user’s version,
the class files are compiled. For checking a version back into Sub-
version, the files have again to be moved, as we want to store only
one copy of class files per user. We plan further to make use of
Subversion’s ability to hold branches of files. This will allow Sub-
version for efficient handling of files and we will need fewer file
handling operations on our application server.

By establishing a nomenclature how versions are named, we not
only store persistently all source code versions per user, but we
also inhibit caching conflicts that may occur from browser caching
mechanisms, from caching mechanisms of the installed JRE plug-in
or from caching implemented on proxies in the network connection:
when new versions of a method in a Java class file are programmed,
the possible caching mechanisms would not reload the newly com-
piled version, as they may not handle different versions of class
files correctly in case they have still the same names. By giving
each version new class names, we enforce the browser to load the
desired version. For an efficient naming system, we have chosen a
nomenclature in the form ”user name”:”version number”:”original
class name”. This guarantees that new class files always have new



names, that all class files may easily be recognized, and that users,
versions, and class files may correctly be associated.

As version control systems do not work with binary files in a sat-
isfying way, software in the form of binary files like libraries or
other resources have to be stored in a file system. They have to be
accessible for the linking process and remain downloadable to the
client’s browser.

6 Showcase

In order to exemplify code-based interactivity and server-side com-
piling, we have chosen to prepare modules teaching sampling the-
ory. It is a fundamental module in many SMET domains and pre-
sented in depth, e.g. in Glassner’s textbook [Glassner 1995]. In
the classic CG curriculum [Foley et al. 1990] the module explains
aliasing effects and formulates the theoretical base for image fil-
tering. Excellent educational online materials exist, e.g. Math-
World (http://www.mathworld.com) with comprehensive illustra-
tions, Bourke’s web site (http://astronomy.swin.edu.au/∼pbourke)
providing source code extracts, or the corresponding Connexions
course. Together with interactivities of Exploratories [Beall and
Hughes 1996] and our own courses [Klein et al. 1998] they are in-
strumental in teaching and self-studies.

Yet, still the computer revolution has not happened. Theory is sep-
arated from the interactivities, and both of them are separated from
their implementation. Content is not compatible, as they use dif-
ferent nomenclature, different approaches, and views. For exam-
ple, teaching and learning is complicated by the use of different
normalizations of the Fourier transformation, different orderings of
the Fourier coefficients, and different visualizations of the Fourier
spectrum. Many programs for sampling, filtering, reconstruction,
and interactive presentation of signals exist, but all work different,
and they cannot be combined and used, e.g. in classroom or in a
Web browser.

On the contrary, our prepared material integrates theory, interactive
illustrations, and real source code into single Web pages. Let us
consider one of these modules, a Web page teaching the discrete
Fourier transformation (DFT, see Figure 3). At a first glance, the
material looks like a textbook with program listings, with one ex-
ception: an execute button. In fact, the material is dynamic. Users
may interact with the illustration, i.e. they may directly manipulate
the samples and the sampling rate in spatial and frequency domain.
During their interactions, we approximate the signal in both do-
mains. The program listing, here the core DFT algorithm, can be
modified. Pressing the execute button sends the user input to the
repository, which in turn sticks the sources together, checks in a
new version, compiles the interactivity and updates the Web page.
Compiler messages are printed below the program listing.

Educators can use such a module as base for exercises. For exam-
ple, they might create a buggy version, or remove some code frag-
ments. Learners could further be prompted to replace the DFT with
an optimized fast Fourier transformation (FFT). As each version is
tracked, educators can get an insight in lacking understanding, and
react properly.

As the software material is written in Java, the author has marked
up the DFT algorithm by a JavaDoc comment. Similar markup
describes the input and output parameters of the algorithm, and re-
lated source code. We have included the latter directly below the
program listing. Users may open the given methods and get either
documentation or another source code editor.

The material can be experienced online at http://www.gris.uni-
tuebingen.de/gris/ilo. We have created a guest account with proper
rights to modify the source code. The only software requirement is
a modern browser and a Java virtual machine or plug-in.

7 Conclusion and future work

Our approach has integrated for the first time educational material
and real source code, respectively merged the ideas of educational
repositories and code repositories. We have turned the textbook
with program listings into dynamic material. Theory gets illus-
trated by visuals or interactivities and their implementation, which
users may modify online. As the source is organized, compiled,
and versioned server-side, repository material is evolved on the fly.
The growing set of alternative implementations could form a proper
base for adaptive software components, i.e. adaptive educational
systems that alter source code.

We proposed server-side compiling to address difficulties in achiev-
ing a critical mass of submissions, as many authors would only ac-
cept a partly open source licence. The resulting code-based interac-
tivity, however, potentially creates new didactics like code-based
multiple choice, code debugging, and code development, which
should be exploited in future work.

To include code-based interactivity into their material authors have
to markup both their material and source code. While the latter only
involves some commenting, content markup in general implicates
the use of a standard XML scheme. We suggested letting the repos-
itory enforce a specific set of supported markup languages, e.g. a
subset of DocBook.

We have presented crucial technical services and tools, and pro-
vided prototype implementations. Extending markup and styles for
code-based interactivity is straightforward, and appropriate online
source code editors exist. The repository services for code compil-
ing and versioning required more attention in order to synchronize
workflow and updates, circumvent browser and plug-in caching,
and develop a matching user management, roles, and rights.

References

ASSUNÇÃO, S. A., FIGUEIREDO, F. C.,AND JORGE, J. A. 2002.
Proposal for a CG education content online submission and
reviewing system. InEurographics/SIGGRAPH Workshop on
Computer Graphics Education (CGE02).

BARANIUK , R. G., BURRUS, C. S., JOHNSON, D. H., AND
JONES, D. L. 2004. Connexions – sharing knowledge and build-
ing communities in signal processing.IEEE Signal Processing
Magazine(May).

BEALL , JEFFE., D. A. M., AND HUGHES, J. F. 1996. Developing
an interactive illustration: Using java and the web to make it
worthwhile. Proceedings of 3D and Multimedia on the Internet,
WWW and Networks.

BROWN, J., Ed. 2002. Visual Learning for Science and Engi-
neering. Report of Eurographics/SIGGRAPH Visual Learning
Campfire.

COLLINS-SUSSMAN, B., FITZPATRICK, B. W., AND PILATO ,
C. M. 2004. Version Control with Subversion for Subversion
1.1. O’Reilly & Associates, Inc.



CUNNINGHAM , S. 2000. GVE ’99: Report of the 1999 eurograph-
ics/siggraph workshop on graphics and visualization education.
ACM SIGGRAPH Computer Graphics 33, 4, 96–102.

FIGUEIREDO, F. C., EBER, D. E.,AND JORGE, J. A., 2004. Com-
puter graphics educational materials source - policies and status
report. ACM SIGGRAPH 2004, Aug.

FOLEY, J. D., VAN DAM , A., FEINER, F., AND HUGHES, J. F.
1990.Computer Graphics, Principles and Practice, Second Edi-
tion. Addison-Wesley, Reading, Massachusetts.

GLASSNER, A. S., Ed. 1990.Graphics Gems I. Academic Press.

GLASSNER, A. S. 1995. Principles of Digital Image Synthesis.
Morgan Kaufmann, San Francisco, CA.

HANISCH, F., AND STRASSER, W. 2003. Drag & drop script-
ing: How to do hypermedia right.Eurographics 2003 Education
Presentations (EG’03).

HANISCH, F.,AND STRASSER, W. 2003. Adaptability and interop-
erability in the field of highly interactive web-based courseware.
Computer & Graphics 27, 4, 647–655.

HECKBERT, P. S., Ed. 1994.Graphics gems IV, vol. 4 ofGraphics
Gems. AP Professional, Boston, MA, USA.

KLEIN , R., HANISCH, F., AND STRASSER, W. 1998. Web based
Teaching of Computer Graphics: Concepts and Realization of an
Interactive Online Course. InSIGGRAPH 98 Conference Pro-
ceedings, Addison Wesley, M. Cohen, Ed., Annual Conference
Series, ACM SIGGRAPH.

KNOX, D., GOELMAN , D., FINCHER, S., HIGHTOWER, J.,
DALE , N., LOOSE, K., ADAMS, E., AND SPRINGSTEEL, F.
1999. The peer review process of teaching materials: Report
of the ITiCSE’99 working group on validation of the quality of
teaching materials. InITiCSE-WGR ’99: Working group reports
from ITiCSE on Innovation and technology in computer science
education, ACM Press, 87–100.

LALEUF, J. R.,AND SPALTER, A. M. 2001. A component repos-
itory for learning objects: a progress report. InJCDL ’01: Pro-
ceedings of the 1st ACM/IEEE-CS joint conference on Digital
libraries, ACM Press, 33–40.

OWEN, G. S., SUNDERRAMAN, R., AND ZHANG, Y. 2000. The
development of a digital library to support the teaching of com-
puter graphics and visualization.Computers and Graphics 24, 4
(Aug.), 623–627.

PAPERT, S. 1980.Mindstorms: Children, computers, and powerful
ideas. Basic Books, New York.

SHNEIDERMAN, B. 1997. Direct manipulation for comprehen-
sible, predictable and controllable user interfaces. InIUI ’97:
Proceedings of the 2nd international conference on Intelligent
user interfaces, ACM Press, 33–39.

SMITH -GRATTO, K., WICKS, D., AND BERGER, C. 2002. Mer-
lot: Reaping the on-line vineyard. InProceedings of ED-MEDIA
2002.

SPALTER, A. M., AND VAN DAM , A. 2003. Problems with using
components in educational software.Computers & Graphics 27,
329.

WALSH, N., AND MUELLNER, L. 1999.DocBook: The Definitive
Guide. O’Reilly & Associates, Inc.

WANG, P. S., KAJLER, N., ZHOU, Y., AND ZOU, X. 2003. WME:
towards a web for mathematics education. InISSAC ’03: Pro-
ceedings of the 2003 international symposium on Symbolic and
algebraic computation, ACM Press, 258–265.



Figure 3: Server-side compiling turns the textbook with program listings into dynamic material. This material teaches signal processing.
Samples and sampling rate are directly manipulative in spatial and frequency domain. Users may modify the implementation of the discrete
Fourier transformation at place. As the source is organized, compiled,and versioned server-side, material evolves on the fly.


