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Abstract

In this paper we demonstrate how a medium calledpolynomiogra-
phy, which consists of techniques for visualization of polynomial
equations, can be used to animate mathematical concepts, thereby
offering a valuable tool for education. More specifically, we will
show how it can be used to visualize the following topics: Voronoi
regions of points in the plane; multiplication of complex numbers
and their interpretation as rotation; sensitivity of polynomial roots
as coefficients change; visualization of classes of special polyno-
mial equations arising from two problems from the American Math-
ematical Monthly; as well as animation for the sake of visual art.
Each of these will be exhibited through a series of images and we
give the Internet links to the corresponding animations. These sites
can be accessed for educational purposes and will be upgraded and
expanded from time to time.

CR Categories: G.1.5 [Numerical Analysis]: Roots of Nonlin-
ear Equations—Polynomials, method for; G.4 [Mathematical Soft-
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cation]: Computer-assisted instruction; I.3.3 [Computer Graphics]:
Picture/Image Generation—Viewing algorithms; J.5 [Arts and Hu-
manities]: Fine arts
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1 Introduction

It is not surprising that a visual image or an animation can some-
times be much more effective in conveying certain concepts or
properties than pages of explanations. Together, of course, these
would provide the most effective combination. Perhaps in no other
field do we see the validity of this claim so easily than the field
of mathematics. The purpose of this paper is to demonstrate this
property through a medium calledpolynomiography, defined to be
“the art and science of visualization in the approximation of zeros of
complex polynomials, via fractal and non-fractal images created us-
ing the mathematical convergence properties of iteration functions”
(see [Kalantari 2002b; Kalantari 2003b; Kalantari 2003a; Kalantari
2004b] for more detail).

A complex polynomialof degreen is an expression of the form

p(z) = anzn +an−1zn−1 + · · ·+a1z+a0,

where the coefficientsai arecomplex numbers. A complex number
is a number of the formz= x+ iy, wherex,y are real andi =

√−1.
The set of complex numbersis denoted byC. The modulusof z,
denoted by|z| is defined by

√
x2 +y2. The polar representation of
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z is (r,θ ), wherer = |z| andθ is the angle that the vector(x,y) forms
with the positivex-axis. In particular,z= reiθ = r(cosθ + isinθ ).

The problem of approximating roots ofp(z), i.e. the solutions to
p(z) = 0, is a fundamental and classic problem (see [McNamee
1993]). Only polynomials of degreen≤ 4 have a closed formula for
computing their roots. But even the problem of computing square-
roots have to be carried out through approximation means, the best
known of which is Newton’s method, defined for the general poly-
nomial by the iteration function

N(z) = z− p(z)
p′(z)

.

The challenge of visualization of polynomial root-finding behavior
via Newton’s method was attempted before the advent of modern
computer. In 1879, Cayley [Cayley 1897] raised questions on the
behavior of Newton’s method for quadratic and cubic polynomi-
als in the complex plane (see [Peitgen and Richter 1996]). He was
only able to find the answer for quadratics, where the regions of
attraction are merely the Voronoi regions of the two roots. Given
a general complex polynomialp(z), the Voronoi region of a par-
ticular root θ is a convex polygon defined by the locus of points
which are closer to this root than to any other root. The region of
attraction for a rootθ is the set of points in the plane such that when
used as a starting point Newton’s iterations will converge toθ . For
cubic polynomials, the regions of attraction of Newton’s method
give only a crude approximation of the actual Voronoi regions of
the three roots. The boundaries of these regions exhibit fractal be-
havior and are now known asJulia sets. The computer visualization
of this phenomenon was apparently first obtained by John Hubbard
(see [Glick 1988]).

More generally, one can consider visualization of polynomial root-
finding, i.e. polynomiography, via other iteration functions. In
particular, an infinite family of iteration functions called theBa-
sic Family [Kalantari and Kalantari 1996; Kalantari et al. 1997;
Kalantari 1999; Kalantari 2000a; Kalantari 2000b] can be used.
Polynomiography provides two-dimensional images of the process
of approximation, viewed through this infinite family of iteration
functions. An individual image is called apolynomiograph. The
word “polynomiography” is a combination of the wordpolynomial
and the suffix -graphy.A polynomiograph may or may not turn out
to be a fractal image.

The Basic Family, whose individual members include the well-
known Newton and Halley methods, have been rediscovered inde-
pendently by other researchers through different means. It is a pow-
erful family which admits numerous different forms and represen-
tations. Schr¨oder [Schr¨oder 1870] apparently is one of the first to
have derived and studied this family in some generality. The same
family is also sometimes referred to as K¨onig’s family (see [Vrscay
and Gilbert 1988]). In fact the Basic Family and more advanced
versions are closely related to the celebrated Taylor’s Theorem and
the Fundamental Theorem of Algebra (see [Kalantari 2000a]).

The Basic Family is denoted byBm(z), m = 2,3, · · ·. The first
member of the Basic Family,B2(z), is Newton’s iteration function,
andB3(z) is Halley’s iteration function, which dates back to 1694.



The rich history of these two iteration functions can be found in
[Ypma 1995] and [Traub 1964]. Many results on the properties
of the members of the Basic Family, including their close tie with
a determinantal generalization of Taylor’s theorem, can be found
in [Kalantari and Kalantari 1996; Kalantari et al. 1997; Kalan-
tari 1999; Kalantari 2000a; Kalantari and Gerlach 2000; Kalantari
and Park 2001; Kalantari 2000b; Kalantari and Jin 2003; Kalantari
2004a].

A convenient form for the Basic Family members is through a re-
markably compact closed formula. Considerp(z). SetD0(z) ≡ 1,
and for each natural numberm≥ 1, define

Dm(z) =
n

∑
i=1

(−1)i−1 pi−1(z)p(i)(z)
i!

Dm−i(z), Dj = 0, j < 0.

For eachm≥ 2, define

Bm(z) ≡ z− p(z)
Dm−2(z)
Dm−1(z)

.

Now if θ is a simple root ofp(z) (i.e. p′(θ ) 6= 0), then there exists a
neighborhood ofθ such that given anya0 in this neighborhood, the
fixed-point iterationak+1 = Bm(ak) is well-defined and converges
to θ having orderm (roughly speaking the number of correct deci-
mals grow by a factor ofm in each iteration).

The basin of attraction of a rootθ of p(z) with respect to the iter-
ation functionBm(z) is the set of points in the complex plane such
that, when used as the initial pointa0, the corresponding sequence
of fixed-point iterates,ak+1 = Bm(ak), will converge toθ . It turns
out that the boundary of the basin of attraction ofθ coincides with
the corresponding set of any other rootθ ′ of p(z). This common
boundary is known as a Julia set and its complement as a Fatou
set. The fractal nature of Julia sets and the images of the basins
of attraction of Newton’s method have become familiar after Man-
delbrot’s work (see The Fractal Geometry of Nature [Mandelbrot
1983]) popularized the work of Julia [Julia 1918] and Fatou [Fatou
1919]. Analysis of fractals was later undertaken by [Peitgen et al.
1992].

We can use the Basic Family eitherindividually, or as a sequence,
to visualize polynomial equations. Given any inputa, the Basic
Sequence{Bm(a) = a− p(a)Dm−2(a)/Dm−1(a)}∞

m=2 converges to
a root ofp(z). Under some regularity assumptions (e.g. simplicity
of the roots), for almost all inputs within the Voronoi polygon of a
root, the corresponding Basic Sequence converges to that root.

While the theoretical aspects of polynomiography do intersect with
both the theory of fractals and dynamical systems, it is claimed
that polynomiography has its own independent characteristics and
existence. In fact, polynomiography will not only help produce a
unified perspective into the theory of root-finding, but will also en-
able the discovery of new properties of this ancient problem. Poly-
nomiography is perhaps the most systematic method for the visu-
alization of root-finding algorithms – bringing it to the realm of
art and design (see [Kalantari 2002b; Kalantari 2003b; Kalantari
2003a; Kalantari 2004b] for more detail). In this paper we are in-
terested in educational aspects of polynomiography. In particular,
applications that benefit from animation through polynomiography.
We will exhibit polynomiography’s utility through a set of exam-
ples and give the Internet links to the corresponding animations.

2 Animation of Approximate Voronoi Re-
gions

The Voronoi region of a rootθ of p(z) is a convex polygon defined
by the locus of points which are closer to this root than to any other
root. More precisely, the Voronoi region of a rootθ is

V(θ ) = {z∈ C : |z−θ | < |z−θ ′|, θ ′ ∈ Rp, θ ′ 6= θ}.

Each Voronoi region is a polygon which may or may not be
bounded. The boundary of each Voronoi region is either a line
segment or a ray consisting of points equidistant to two distinct
roots of the polynomial. Any finite set of points in the plane corre-
sponds to the set of roots of a polynomial equation, and conversely.
The Basic Family has the property that for largem the basins of
attraction provide close approximation of the Voronoi regions (as
m approaches infinity they converge to the Voronoi regions). Al-
though the Voronoi regions of a given set of points can be computed
very efficiently using computational geometry techniques, if the set
of points is given as a polynomial equation then polynomiography
provides a direct approach for computing the Voronoi regions with-
out the need to compute the roots in advance (see also [Kalantari
2002a]). In particular, this becomes desirable when the polynomial
is sparse (having a few nonzero coefficients).

Polynomiography is a convenient medium to demonstrate or dis-
cover Voronoi regions. Figure 1 shows the polynomiography of
z4 − 1 and Figure 2 the polynomiography of a polynomial corre-
sponding to a random set of points.

Figure 1: Evolution of basins of attraction to Voronoi re-
gions via Bm(z): p(z) = z4 − 1, m = 2,3,4,50. For animation
visit www.cs.rutgers.edu/∼kalantar/Animation, Voronoi
Regions of Roots of Unity.

Figure 2: Evolution of basins of attraction to Voronoi regions
via Bm(z): random points,m = 2,4,10,50. For animation
visit www.cs.rutgers.edu/∼kalantar/Animation, Voronoi
Regions of Random Points.

3 Animation of Root Sensitivity

It is well known that the roots of polynomials maybesensitiveto
small changes in their coefficients. Classical example is the poly-
nomial



p(z) = (z−1)(z−2) · · · (z−n).

For instance, forn = 7 we have:

p(z) =

z7−28z6 +322z5−1960z4 +6769z3 −13132z2 +13068z−5040.

Even changing the coefficient ofz6 from −28 to, say,−28.002
causes a somewhat large change in the roots; indeed some real
roots become complex. This phenomenon can be visualized via
polynomiography. Figure 3 shows a few instances corresponding
to gradual changes in the coefficient ofz6.

Figure 3: Changes in the roots as the coefficient ofz6

is decreased. For animation visitwww.cs.rutgers.edu/∼
kalantar/Animation, Voronoi Region of Random Points.

4 Animation of Complex Multiplication

Indeed polynomiography is a rich medium for teaching the prop-
erties of complex numbers. Consider two complex numbersz1 =
a+ ib andz2 = c+ id. Their addition is defined as(a+b)+ i(c+d),
while their product is defined as(ac− bd) + i(ad+ bc). If z1 =
r1eiθ1 andz2 = r2eiθ2 , then their product is alsor1r2ei(θ1+θ2). This
means their product is the complex number whose modulus is the
product of the two moduli while its angle can be interpreted as that
of rotating the vector(a,b) counterclockwise by the angleθ2, if θ2
is positive; or clockwise by the angle−θ2, if θ2 is negative. This
property can be viewed through polynomiography as follows.

Consider the polynomialp(z) = c(z− z1) · · · (z− zn). Let γ be a
complex number. Consider the polynomialp(γz). Clearly, the roots
of p(γz) are the solutions to

γz−zi = 0, i = 1, · · · ,n.

Thus the new roots are
z′i = zi/γ .

Hence, the roots ofp(γz) are those ofp(z) multiplied by the com-
plex number 1/γ . But if γ = reiθ , then 1/γ = r−1e−iθ . This means
the roots ofp(γz) will be rotated, clockwise or counterclockwise by
the angleθ , while their moduli will be scaled by the factorr−1.

As an example, if we takep(z) = z4 − 1, andγ = eiπ/3, then we
expect that the roots ofp(z) will be rotated by an angle of 60 de-
grees clockwise while their magnitudes remain unchanged. We can
actually visualize this via polynomiography. We have

p(γz) = (eiπ/3)4z4−1 = e4π i/3z4−1.

Visualizing p(z) andp(γz) is captured in Figure 4.

Figure 4: Two polynomiographies of p(z) =
z4 − 1 and p(eiπ/3z). For animation visit
www.cs.rutgers.edu/∼kalantar/Animation, Rotation.

5 Animation of Polynomials Arising in a
Problem of Knuth

Let a = (a0,a1, . . . ,an) be an(n+1)-vector whereak ∈ [0,1], k =
0, . . . ,n. Consider the polynomial

pa(z) =
n

∑
k=0

ak

(
n
k

)
zk(1−z)n−k.

An inequality concerning these polynomials appears in the Ameri-
can Mathematical Monthly 110, January 2003, Problem 10985.

Here we are interested in how the roots ofpa(z) depend on the
vectora. Whenak = 1 for all k, thenpa(z) = (z+1−z)n ≡ 1. For
each vertex of the(n+1)-dimensional hypercubeBn+1 we obtain a
polynomial pa(z). One possible experimentation in understanding
the nature of the roots is to consider polynomiography ofpaα (z),
where

aα = αu+(1−α)v, α ∈ [0,1]

with u andv vertices ofBn+1, i.e. wherea is a convex combination
of two vertices of the hypercube. Intuitively, we may wantuandv to
be diagonally opposite of each other, i.e.ui = 1−vi , for i = 0, . . . ,n.

As an example whenn = 1, u = (0,1,0), andv = (1,0,1), then
aα = (1−α,α,1−α), and it is easy to show that

paα (z) = (2−4α)z2 − (2−4α)z+1−α.

For a polynomiography of this visit
www.cs.rutgers.edu/∼kalantar/Animation, Polynomiogra-
phy of polynomials in a problem of Knuth.

6 Animation of a Problem from the
Monthly

The following is posed as problem 10987 in the American Mathe-
matical Monthly 110, January 2003 issue:

Consider the polynomial

P(z) = zt(z−z1) · · ·(z−zn),

where|zi | ≥ 1. Show thatp′(z) has no zeros in the disc{z : |z| <
t/(t +n)}.

We argue that this can be verified via polynomiography for some
special polynomials. One way to verify this is to consider Newton’s
method. If Newton’s method is well-defined at a pointz, which is
not a root ofp(z), thenp′(z) cannot be zero.



Consider the simple case wherep(z) = zt(zn−1). Then,

p′(z) = zt−1((t +n)zn− t).

So, whenz 6= 0 is in the disc{z: |z|< (t/(t+n))1/n}, thenp′(z) 6= 0.

Figure 5 gives a polynomiography of this forp(z) = zt(z4−1), t =
1,2,3. Note the large region of convergence for Newton’s method
for the root at origin. This is depicted as the red region in the figure.

Figure 5: Polynomiography ofp(z) = zt(z4 − 1). For animation
visit www.cs.rutgers.edu/∼kalantar/Animation, A Prob-
lem of the Monthly.

Figure 6 gives a polynomiography of such ap(z), t = 1,2,6, but
having random nontrivial roots. The green region is Newton’s re-
gion of convergence to the origin.

Figure 6: Polynomiography of a random polynomial with nontrivial
roots outside of unit disc.

7 Animations as Visual Art

It is possible to use polynomiography as a tool for creating interest-
ing animation as visual art. Here we simply refer the reader to the
Internet site www.cs.rutgers.edu/∼ kalantar/Animation.
This aspect of polynomiography in itself has promising applications
and will be exploited more extensively elsewhere.

8 Conclusion

In this paper we have demonstrated how polynomiography can be
used to animate mathematical properties, concepts, and even theo-
rems, thereby offering a revealing tool for educators. It appears to
be a practical and significant educational instrument with diverse
applications. It can be used at various levels: not only at high
schools and middle schools, but as a tool that can even entice chil-
dren interested in mathematics and polynomials. The fact that all
animations in this article were implemented by a high school stu-
dent - Aleksei Andreev - while using a polynomiography software
of the first author – speaks well that such applications are quite pos-
sible.

On the other hand, polynomiography is a sophisticated tool that can
be used at college level by students and teachers. Indeed scientists
too could find polynomiography to be a useful tool. Artistic
applications of animation with polynomiography are invitingly a

field worthy of serious attention. In this paper we have only given
a glimpse of what may be possible through polynomiography
animation. The true animation possibilities of polynomiography
are indeed vast. In achieving some of the advanced educational or
artistic applications, it is desirable to develop more sophisticated
polynomiography software that is also user-friendly for the
particular audience or purpose being considered. This is a future
plan as is providing further material concerning polynomiography
and its applications.
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