
A Top-Down Approach to Teaching Introductory Computer Graphics

Abstract
There are two common strategies for teaching introductory
computer graphics (CG) programming. The first and most
traditional covers the CG field in a bottom-up manner starting
from foundational algorithms such as triangle rasterization. The
second is top-down and analyzes the functional modules of
applications. This paper argues that the top-down approach is
well-suited for mature adult students. A course that has
successfully implemented a top-down approach is then described.

1 Introduction

The syllabus of a course represents the design of a solution for
teaching the materials involved. In this way, we can examine the
different approaches to teaching Introductory Computer Graphics
(CG) based on the classic Structured System Design
Methodologies [1]. In particular, we can analyze the syllabi of
introductory CG programming courses based on bottom-up and
top-down design models.

Traditional introductory CG courses (e.g. [2]) typically follow the
classical CG textbooks (e.g. [3]) and usually begin by introducing
and surveying the CG field as a whole. These courses then
identify the important foundational building blocks (e.g. raster-
level algorithms, transformations, etc.) in modern CG systems,
and move on to study each of the building blocks in detail. These
courses present students most of the foundational building blocks
of modern CG systems and students gain knowledge of what is
“under the hood” of modern graphics coprocessors. This bottom-
up approach is well-suited for traditional undergraduate students.
The in-depth coverage of basic algorithms not only prepares them
for future and more advanced courses; it also serves the important
role of demonstrating problem solving approach and formulation
of solutions. For these students the detailed study of matrix
transformations are examples of applications of the covered
mathematic skills. These students are then equipped with the
understanding of the basics of the field. They typically have
technical knowledge of the underlying implementation of the
basic components in popular graphics Application Programming
Interface (API) libraries (e.g. OpenGL [4], or DirectX-3D [5]). In
addition, it is possible for the more advanced students to apply
some of these basic ideas in more advanced areas.

While the strength of the bottom-up approach is that it teaches the
basic mathematics and methodology of graphics engine design, in
the near term it does not enable students to use a powerful
graphics API to design complex applications and thus may seem
to lack practical impact. For traditional undergraduate students
this may not be a serious problem for they have the time and
opportunity to apply this knowledge in their future classes and/or
career development. However, for more mature students in their
mid-career, the near-term relevancy of low-level algorithms and
mathematics derivations becomes a serious question. For
example, after a bottom-up CG course, a student will look at 3D
applications like Maya [6] and be able to appreciate that the DDA

line drawing algorithm is part of the foundation building block.
However, this student will also notice the complexity of the
software system, and wonder if time may be better spent learning
the higher level and more visible functionality.

The alternate approach of using an example application to explain
CG issues is a natural way of addressing the above concerns, in
other words, a top-down approach. Three years ago such a top-
down course was started at the University of Washington,
Bothell [7] where many of the students are more mature. This
consisted of two 10-week courses based on interactive graphics
application development. These courses attempted to balance
fulfilling the students’ expectations and covering sufficient basic
concepts to assist students in future self-learning. This paper
concentrates on the first of these two courses where students are
introduced to 2D interactive graphics programming. The second
course is similar to the first except concepts are extended to the
third dimension. This paper begins by discussing the idea behind
top-down approach to teaching CG and identifying the reasons
why this approach is well suited for the more mature adult
students. An approach based on interactive graphic application
development is then described. The paper concludes with what
has been learned and how this curriculum should be modified for
future offerings.

2 Top-Down Approach to Introducing CG

A top-down approach to teaching CG would identify a moderately
complex application and decompose the system into functional
modules. The course would then cover the modules while relating
each module back to the target application. In this way, students
learn the foundations and structure of graphics applications while
practicing the more visible application-level knowledge and skills.
Ideally the functional modules from the top-down approach
should be continuously decomposed into smaller units until the
units become the foundational building blocks identified in the
bottom-up approach. However, given the sophistication of the
modern graphics applications, this ideal decomposition process
cannot be accomplished in a single term. This is the same reason
a typical bottom-up CG course does not have time to complete a
moderately complex graphics application. The API libraries can
serve as a convenient convergence point for the two approaches.
A top-down approach would teach students to implement
functional modules based on the popular graphics APIs. Besides
serving as a practical skills training, using an API extensively in
building a moderately complex system helps students understand
the design and appreciate the pros and cons of the API.

One difficulty in designing a top-down syllabus for introductory
CG courses is identifying an appropriate top. The top in this
context refers to a target software system. In the bottom-up
approach, it is straightforward to identify the bottom as the basic
building blocks of general CG systems. The key is that the basic
building blocks are, in general, suitable for building any of these
CG systems. In a top-down approach, the ‘‘target software
system’’ must be well defined. It is important to identify a target

Kelvin Sung
Computing and Software Systems
University of Washington, Bothell

Peter Shirley
School of Computing

University of Utah

system that demands a sufficiently large set of common
supporting requirements shared by many CG software systems.

The bottom-up and top-down approaches to solving the learning
and teaching of introductory CG programming problem are
almost exactly complementary. Given a time limit, the top-down
approach trades the high-level system architecture understanding
(e.g. event handling models, scene graph design and traversal
approaches) for bottom-up’s foundation knowledge (e.g.
rasterization algorithms). Of course, the two approaches are not
strictly mutually exclusive. For example, bottom-up approach
often uses a simple target application framework for students to
investigate the implementation of different algorithms. Whereas
in top-down approach; it is possible to cover some low level basic
algorithms. Course syllabus should be designed according to the
expected student-learning outcome.

3 A Top-Down Introductory CG Course
The University of Washington, Bothell (UWB) was established in
1990 as an upper-division-only campus that offers junior, senior,
and graduate level courses [7]. Situated in the midst of the
Northwest's technology corridor, many of our students pursue the
Computing and Software Systems (CSS) [8] degree for career
transition and/or as a means to begin a career in the technology
field. Our students typically hold full or part time jobs, have
family obligations, and have somewhat rusty mathematic skills.
They are also motivated and concerned with their near-term
marketability. The materials covered in our courses are
constantly under tension between the foundational scientific
concepts and technical skills training

The past few offerings of CSS450: Introduction to Computer
Graphics [9] approached the teaching of CG programming in a
top-down manner. As in most of our courses, CSS450 is a 5-
credit 10-week quarter course with about 200 minutes of lecture
per week. With the understanding of our students’ background
and expectations, this introductory CG course is designed to spark
students’ interests in the field. The documented goals of this
course are to analyze the components that are under the hood of
popular interactive graphics applications (e.g. Power-point like
and/or drawing/sketching programs); and to study these
components such that students can design and implement such
applications based on popular APIs. The undocumented and yet
very important objectives are to motivate and to ensure the
coverage of sufficient conceptual knowledge to facilitate students’
future self learning.

These undocumented objectives form the main guidelines for the
design of the class. To motivate and excite students (especially
into polishing their rusty mathematic skills), all topics covered are
evaluated against popular software that are familiar to students.
In addition, all programming assignments in the class are

disguised as interactive games development. To ensure the proper
balance between conceptual knowledge and skill set training, all
components covered are evaluated based on more than one API
from different vendors. This is coupled with constant emphasis
that the ideas learned are technology independent and students
must appreciate that the concepts can be applied to any modern
technologies.

One of the most important tasks in the top-down approach is the
selection of an appropriate target software system to commence
the analysis of functional modules. Based on the motivation
guideline, the ‘‘popular interactive graphics application’’ is
selected as the target application. We observed that most of the
‘‘popular interactive graphics applications’’ can be described as
applications that allow users to interactively update their internal
states. These applications provide real-time visualization of their
internal states with the graphics subsystem. In addition, these
applications typically support some mechanisms that allow the
user to define simple animations. Figure 1 shows one way of
decomposing these types of applications into major functional
modules. In general, it can be assumed that the modules are
implemented based on existing User Interface APIs (e.g.
FlTk [10], or MFC [11]) and Graphics APIs (e.g. OpenGL, or
DirectX-3D). Based on this framework, the syllabus of our
introductory CG course becomes a mapping of the requirements
to understand and implement these functional modules into
specific topics in CG. Three general topic areas are identified:
Event and Simulator Driven Programming, Graphics API
Abstraction, and Transformation. These topics are scheduled in
our course based on drawing from students’ strength in software
development. We begin with discussion/practicing of
programming models (Event and Simulator Driven
Programming), followed by graphics hierarchy
design/implementation (Graphics API Abstraction), and finally
topics in Transformation. These three topics are covered in the
first 6 weeks’ of class. At which point students commence to
work on their final project. The remaining 4 weeks are divided
between discussions of topics related to students’ final project
development (e.g. collision detection algorithms, texture mapping,
etc.) and the fundamental algorithms in CG (e.g. color models,
raster level scan conversions, etc). In the rest of this section, each
of these topics is briefly discussed and summarized with how we
approach in designing interactive-game-like programming
assignments for students to practice and reinforce the concepts
involved.

Event and Simulator Driven Programming. The prerequisites
of CSS450 are advanced data structure classes. By the time
students enroll in CSS450, they typically have extensive and
polished basic programming skills working with data structures.
These skills are usually confined to solving simple problems
based on the internal control model [12]. Drawing on students’

 User Interface API
(e.g. FlTk, MFC)

Application

Simulator
Driver

Graphics API
(e.g. OpenGL, D3D)

Graphics
Hierarchy

Event
Handler

Figure 1: Components in Interactive Applications

User Events Timer Event

Graphics Hierarchy

Application
State

Event
Handler

Figure 2: Application Architecture

Triggers
Redraw

Triggers
Simulation

User
Actions

Changes

Simulator
Driver

Updates

programming skills and practicing problem solving with the
external control model of event driven programming is a good
way to introduce them to the field of interactive graphics
programming. Figure 2 depicts an implementation architecture
based on the functional modules identified in Figure 1. In this
case, the Event Handler module would support the interaction
with the user for updating the state of the application; the
Simulator Driver would trigger and run simulations (which would
result in application state change and show up as animations); and
the Graphics Hierarchy would support the visualization and/or
displaying of the application state. Arguably, this topic is biased
towards technical skill set training. The concepts of programming
models and problem solving approaches can be enhanced by
discussing how different User Interface APIs support the
implementation of these ideas. Other reasons for introducing the
course with this topic are that it is more straightforward to
overcome the technical challenges involve; and the programming
assignments are typically interesting interfaces that students can
play with.

The programming assignment for this topic would be developing
software that supports user actions in modifying and interacting
with simple internal states. One example would be implementing
a system that supports defining/drawing a circle with simple click
and drag mouse actions. The real-time simulation module would
be activated after the circle is defined. For example, a random
velocity can be assigned to the circle such that the circle
constantly moves on the screen. Finally the entire assignment can
be disguised as a game where students have to implement
interactive functionality to keep the circle in a specific area of the
screen by colliding the circle with the mouse pointer.

Graphics API Abstraction. This topic is covered to achieve two
major objectives. The first is to introduce and utilize the abstract
graphics engine presented by popular Graphics APIs. Once again,
the balance between technical skill training and basic conceptual
knowledge is achieved by comparing and contrasting at least two
of such abstractions (e.g. DirectX-3D vs. OpenGL). The second
goal is to prepare students for large scale software development
by demonstrating how to take advantage of object oriented design
in the CG settings.

The programming assignment for this topic would be developing
software that demonstrates how to interact with the behaviors of
abstract graphics objects without knowledge of what actual
primitives are being processed. For example, design a primitive
drawing program based on the behaviors of an class, where simple
primitives (e.g. points, lines, circles, etc.) can be defined
interactively with the exact same interaction routines. Once again,
the simulation and game playing modules would be activated after
the primitives are defined. In this example, the program can be
extended to support pushing (initiating a velocity based on
mouse’s collision) the primitives on the screen based on the class
behaviors.

Transformation. By this time, students would have experience
with developing moderately complex systems (e.g. several
thousands of lines of C++ code) interacting with users drawing
different types of graphics primitives. They would begin to realize
the restrictions of working directly in the screen coordinate
system and begin to appreciate the need to have more than one
view into the world with zooming and panning functionality.
These serve as motivations for introducing coordinate
transformations. The coverage of coordinate transformation
pipeline leads naturally to hierarchical modeling where the object
coordinate space can be decomposed into coordinate spaces of

each individual component. With the graphics hierarchy
introduced in Figure 3, compound objects can be defined based on
TobjectList composing of other TgraphicsObject primitives. Since
TobjectList is itself a TgraphicsObject, it is straightforward to
build homogenous list-of-list of TgraphicsObjects. This general
homogeneous list-of-list serves as simple examples of scene
graphs.

The programming assignment for this topic would be developing
software with multiple views of compound objects based on
simple primitives. The software must support general
transformations of components in the compound object. For
example, design a ‘‘stick-figure human’’ based on simple circles
and rectangles where the software must support transforming
(scale/rotate/translate) each body parts (e.g. a hand) individually
and transforming compound body parts (e.g. the entire arm
system, including the hand) as components. As in previous cases,
the simulation and game modules would be separately activated to
support real-time interaction with the user. With the ‘‘stick-figure
human’’ example, game-like interaction could be based on user
manipulating the various body parts via transformations. For
example, the user can control the stick-figure to defend a goal
post. The simulator would generate random shots toward the goal
post, and the user must manipulate the arm system based on the
transformation controls to fend off the incoming shots.

After covering the above three topic areas, the final project
specification is handed to the students at the end of the 6th week.
At this point, students have sufficient knowledge and practical
skills to build a moderately complex interactive graphics system.
However, students have a serious lack of knowledge when it
comes to the foundation CG algorithms. Part of the last 4 weeks
of classes is dedicated to the discussion of the more traditional
fundamental topics. Topics covered include: color models, human
vision system, raster level drawing and clipping algorithms, etc.
With the time restrictions and students’ attentions on their final
project development, the coverage of these topics is necessarily
less extensive than most traditional introductory CG courses. For
example, there are no specific assignments designed for students
to practice these algorithms. To help maintain students’ interests
and engagement in lecture, other more popular topics such as:
texture mapping, alpha blending, and/or special effects with
animated textures, etc. are also covered at an introductory level.
The final project in this class is a 3 to 4 week giant assignment.
Based on a set of strictly defined technical requirements, students
are free to design any system of their choice. To assist students in
meeting their schedules, each student must present user interface
design and progress demonstrations to their peers. These
presentations turned out to be the highlights of the course, where
students show-off their ideas and constructively
criticize/complement each other’s work.

TgraphicsObject

Figure 3: The Graphics Hierarchy

Tcircle Trectangle

Tfillable TlineTpoint

TdrawableTobjectList

4 Evaluation
When comparing our approach to that described in Edward
Angel’s textbook: Interactive Computer Graphics – a Top-Down
Approach with OpenGL [13], the top-down idea is the same.
However, Angel chose a simple application as his target system
for commencing the top-down analysis. This choice is to ensure
that the functional modules in his target system will be the
foundational algorithms. When comparing to our choice of
‘‘popular interactive graphics application’’ there is a vast
difference in software system complexity. In addition, our
objectives are much more limited in scope (to only 2D). Finally
and very importantly, we have very different underlying
approaches to conveying the concepts involved. While our
approach stresses on API independence and the importance of
application of the ideas to all APIs, Angel chose to exemplify the
concepts involved exclusively with one popular graphics API.

We believe a limited success has been achieved in the three years’
offering of this course with our new approach. We evaluate our
achievement based on three criteria: enrollment in the class,
quality of students’ final project, and students’ further interests
after the completion of this course. This course is a free elective
in our curriculum, and students only select this course out of
interest. Over the pass three years, the overall student population
in our department has remained somewhat constant and yet the
enrollment of this course has risen from 10 in Fall 2000, to 20
students in Fall 2002. The quality of students’ final projects is
subject to interpretation. Two of the ways to analyze students’
further interests are to examine the subsequent courses students
take, and students career development after graduation. The
follow-up course of CSS450 is CSS 451: 3D Computer Graphics.
This year, 18 of the 20 students (90%) in CSS450 are registered
for CSS451. Of the 20+ graduates from the previous CSS450
courses, 6 are currently working or interning at local
graphics/games companies. Although these numbers are based on
very small sample size, it does reflect limited success and show
encouraging trend.

However, there are still many difficulties in implementing the
presented top-down syllabus.
1. Text book. There is no CG text book that agrees with the
described top-down approach. As a result, the course has been
based on a few reference classic text books with constant extra in-
class handouts. Although it is possible to convey the essence of
the knowledge involved, the learning suffers from the lack of a
continuous flow that can only be found in one text book.
2. Learning new tools. Students must learn fairly sophisticated
new tools in a relatively short amount of time. For example,
during the first week of Fall 2002 CSS450 offering, students are
expected to learn sufficient MFC and Win32 programming by
themselves to begin developing interactive systems. Although
system manuals and on-line tutorials are very helpful, these are
not designed for our course. The amount of information presented
are typically too extensive in some areas and yet insufficient in
others.
3. Large software system development. Our top-down analysis
is based on ‘‘popular interactive graphics systems’’. This implies
students’ final projects are also such systems. Typically by the
third week of the course, after the introduction of the graphics
class hierarchy, students are working with more than 3000 lines of
C++ code. It is always a challenge to balance between system
development and learning of new CG concepts.
4. Fundamental CG algorithms. As described, the fundamental
algorithms/issues in CG are covered in the latter part of the
quarter. Because of the large scale programming assignment

developments, the course is often behind schedule. As a result, the
coverage of these fundamental topics can sometimes be hurried.
In addition, the focus of the first 6 weeks and the last 4 weeks are
quite different and the transition between the two parts is fairly
difficult. After studying/implementing the application level issues
and highly visible topics (e.g. texture mapping, particle systems,
etc.) the foundation algorithms often appear extra tedious.
Together with the deadline pressure from the final project,
students often find it difficult to concentrate on learning these
topics.
5. Source code documentation and version control. One
important lesson we have learned is that our time and place bound
students do not spend nearly as much time on campus. In addition,
our students typically work on their programming assignments
late at night, and/or over the weekends. These mean students do
not have as much opportunity to interact with their peers and they
often discover the lack of understanding when there is no one
around to help them. Our solution for this situation is to provide a
large number of examples (with source code) that illustrate the
concepts discussed in lectures. For example, the Fall 2002
offering of CSS450 has about 40 different examples and the
average size of these examples are about 2000 lines of C++ code.
These examples are typically non-trivial, with the course schedule
pressure; the source code is usually not well documented. In
addition there is no version control to keep track of bug fixes.

Acknowledgements
Thanks to all CSS450 students for working so hard with the first
author on constantly providing feedback, and to Charles Jackels
for his encouragements and support. The detailed
conceptualization of the top-down vs. bottom-up approaches is a
result of countless discussion with Frank Cioch. It is great to have
a colleague who disagrees and yet is willing to listen. Thanks also
to Diane Gillpesie for organizing the Research Writing Circle at
the UWB, in which Leslie Olsen and Cinnamon Hillyard were
able to meet and provide valuable feedback to the first author
throughout the writing of this paper.

References

[1] E. Yourdon, and L. Constantine, ‘‘Structured Design:

Fundamentals of a Discipline of Computer Program and
System Design,’’ Yourdon Press, 1979.

[2] http://www.cs.utah.edu/classes/cs5600/, March 2003.
[3] D. Hearn and P. Baker, ‘‘Computer Graphics – C Version,’’,

second edition, Prentice Hall, 1997.
[4] M. Woo, J. Neider, and T. Davis, ‘‘Programming Guide, 2nd

Edition,’’, Addison Wesley, 2001.
[5] http://msdn.microsoft.com/directx/, March 2003.
[6] Maya Unlimited, Alias|Wavefront, Toronto, Canada,

http://www.aliaswavefront.com, 2002.
[7] http://bothell.washington.edu, March 2003.
[8] http://bothell.washington.edu/CSS, March 2003.
[9] http://courses.washington.edu/css450, Mach 2003.
[10] Home Page, FlTk, http://www.fltk.org, 2002.
[11] Jeff Prosise, ‘‘Programming Windows with MFC,’’ Second

Edition, Microsoft Press, 1999.
[12] Brad Myer, ‘‘Separating Application Code From Toolkits:

Eliminating the Spaghetti of call-backs,’’ Proceedings of the
UIST’91, pp. 211-220, November 1991.

[13] Edward Angle, ‘‘Interactive Computer Graphics – a Top-
Down Approach with OpenGL,’’ Second Edition, Addison
Wesley, 2000.

