
The Tech and Art of Cyberspaces in Cyberpunk 2077
Oskar Świerad

oskar.swierad@cdprojektred.com
CD PROJEKT RED
Warsaw, Poland

Peter Ankermann
peter.ankermann@cdprojektred.com

CD PROJEKT RED
Warsaw, Poland

Krzysztof Krzyścin
krzysztof.krzyscin@cdprojektred.com

CD PROJEKT RED
Warsaw, Poland

Figure 1: Johnny Silverhand in cyberspace.

ABSTRACT
A deep dive into the technology and art behind cyberspace and
braindances in Cyberpunk 2077. Braindances are the recorded mem-
ories and feelings of individuals, reprojected in the mind of the
viewer. To bring this concept into reality, we decided to follow an
unconventional approach to rendering environments and charac-
ters in real-time. The core visual concept was based around sparse
point clouds and glitch effects. Post processes like datamoshing
were used to further hide the underlying geometry, aiming for a
surreal, out-of-body experience.

CCS CONCEPTS
• Computing methodologies→ Computer graphics.

KEYWORDS
games, realtime rendering, visual effects, shader, post process, point
cloud
ACM Reference Format:
Oskar Świerad, Peter Ankermann, and Krzysztof Krzyścin. 2021. The Tech
and Art of Cyberspaces in Cyberpunk 2077. In Special Interest Group on
Computer Graphics and Interactive Techniques Conference Talks (SIGGRAPH
’21 Talks), August 09-13, 2021. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3450623.3464662

1 INTRODUCTION
In this talk, we explain how cyberspace and braindance features
were developed from a technical artist’s point of view. Sparse 3D
point clouds were used to visualize the virtual environments of
both types of digital spaces. Real-time photogrammetry was used
in braindance sequences to reconstruct the position and color of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8373-8/21/08.
https://doi.org/10.1145/3450623.3464662

the scene in the form of a point cloud. As for post processes in
cyberspace, we applied pixel sorting and datamoshing to reach our
vision of the virtual worlds in Cyberpunk 2077.

2 ENVIRONMENT AND BRAINDANCES
We used point cloud rendering as the core visual idea behind cy-
berspace and braindances. Scenes are captured by rasterization
from multiple viewpoints in a process similar to photogrammetry.
The resulting points positions and colors are stored as textures, to
be interpreted by shaders in the game.

Figure 2: Braindance tutorial scene, as seen in the game.

Cyberspace and braindance implementations differ in several
areas. The most important one is the distinction between static
scene capturing (cyberspace), performed locally on the developer’s
workstation, and a dynamic one, happening in real-time in the
game (braindance). The static approach allows us to pre-process
the data in as time-consuming a process as needed, as the cost of
the operation doesn’t affect the final real-time performance. The
output is stored as textures where 1 pixel represents 1 point (quad)
of the cloud.

The input points were generated in external photogrammetry
software, from as many angles as needed, based on videos cap-
tured in the game engine. SideFX Houdini was then used for post-
processing the results. Our Houdini batch process removed points
with a low contribution to the final image through heuristics like
luminosity, closeness to other points, and occlusion culling. We also
implemented 3D spatial clustering in Houdini. It splits a single big

https://doi.org/10.1145/3450623.3464662
https://doi.org/10.1145/3450623.3464662
https://doi.org/10.1145/3450623.3464662


SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA Oskar Świerad, Peter Ankermann, and Krzysztof Krzyścin.

point cloud, representing the entire scene, into smaller, spatially
coherent chunks. This allows the game to cull the visibility of the
static point clouds based on their bounding boxes.

Figure 3: Editing the point cloud in SideFX Houdini.

The dynamicmethod of braindance captures points positions and
their color in real-time. This allows vehicles, people, and objects to
move. Changes in lighting conditions are also reflected instantly in
the visible point cloud.We achieved that by placing 2 or 3 cameras in
every braindance location in the game. These virtual cameras render
the same scene as the main one, but have lower resolution and
narrower clipping distances, for a smaller performance footprint.

Only the Z depth of the scene is captured, to be translated into
32-bit floating point world-space position and stored as a texture.
The resulting image represents the camera’s continuous view space.
Each camera gets its own instanced mesh of quads. Such a point
cloud mesh has procedurally generated UV coordinates that match
the view area of the camera.

The color of the dynamic point cloud is calculated in the pixel
shader. Then it is used to fetch the final scene color from the game’s
buffers, after lighting but before post processes. This color is pro-
cessed by applying 3D noises and a precomputed shadow mask to
get a desired artistic effect, then applied to the quad.

3 CHARACTER SHADER
The holographic representation of the characters in cyberspace
was done with a special shader for these characters. An opaque
blending mode with a 1-bit alpha mask is used. This kind of opacity
is fast to render and avoids the sorting issues that are common with
alpha-blending translucency modes in real-time engines. To achieve
a soft opacity mask despite the binary alpha, Bayer dithering was
applied to it, in combination with temporal anti-aliasing [Korein
and Badler 1983].

Figure 4: Brigitte with applied cyberspace character shader.

In addition to this technique, a mask based on the Fresnel term
was applied to reduce the visibility of the edge of the surface par-
allel to the camera. For readability purposes, an additional low-
resolution texture mask for the head was introduced to limit the

undesired effect of the Fresnel mask hiding parts of the face. An
animated 3D noise map, stored as a tileable 2D texture array, was
used to randomize the transparency effect even more.

4 POST PROCESSES
A multitude of standard post-processing effects were used for cy-
berspace. Examples include bloom, tinting, chromatic aberration,
and color grading, to name a few. Then we developed real-time im-
plementations of datamoshing and pixel sorting. These two meth-
ods are common in offline video post-processing but are rarely
found in video games due to the computing power and memory
requirements of their usual implementations.

Our pixel sorting shader does what the name already suggests,
sorting the pixels of the screen color buffer - in our case vertically -
by luminosity. Use of GPU-friendly sorting algorithms in combi-
nation with a compute shader helped maintain a real-time frame
rate.

Datamoshing refers to video compression errors caused by un-
readable I-frames. Video compression works with 3 types of key
frames: I, P, and B-frames. I-frames contain complete images, but
are only stored sparsely and when the picture changes abruptly. P
and B-frames, on the other hand, are used in between the I-frames
and only store instructions to get from one complete image to the
next. If an I-frame can’t be read anymore because of corruption, it
will appear as if the image is projected onto another background,
or it starts to smear, until the next I-frame can be parsed correctly.

Figure 5: Feedback loop effect generated by datamoshing.

To deliberately replicate this effect, we applied multi-pass render-
ing to store the last frame of the rendered color buffer and blended
it with the current one via a noise mask. In addition to this, the
motion vectors were read and applied to transform the image of the
last frame before these two images were blended together. This post-
process went through multiple iterations and the softer dream-like
transition ended up in the final game.

5 CONCLUSION
We discussed the artistic decisions and technical solutions that we
ended up with regarding cyberspace and braindance visualization.
After a lot of iteration on every aspect, in close cooperation with our
rendering department, we were able to realize a never-before-seen
representation of digital realities in a 3D video game.

REFERENCES
Jonathan Korein and Norman Badler. 1983. Temporal anti-aliasing in computer generated

animation. University of Pennsylvania. https://dl.acm.org/doi/10.1145/964967.
801168

https://dl.acm.org/doi/10.1145/964967.801168
https://dl.acm.org/doi/10.1145/964967.801168

	Abstract
	1 Introduction
	2 Environment and Braindances
	3 Character Shader
	4 Post Processes
	5 Conclusion
	References

