
Real Time Interactive Deformer Rig Evaluations in Maya using
GPUs

FunShing Sin
Blizzard Entertainment
fsin@blizzard.com

Parag Havaldar
Blizzard Entertainment
phavaldar@blizzard.com

Vinod Melapudi
Blizzard Entertainment
vmelapudi@blizzard.com

ABSTRACT
Maya has supported evaluating deformer nodes on GPU since 2016.
However, such GPU support in Maya is limited to evaluating simple
linear chains of deformer nodes. In feature productions, charac-
ter rigs have a complex network of deformation chains resulting
in most deformers being evaluated on CPU. Here we will detail
such architectural limitations within Maya. Then we present our
approach that overcomes these limitations to fully evaluate defor-
mation networks on GPU, which has enabled our rigs to perform
over 50fps on GPU, compared to 5fps on CPU.

CCS CONCEPTS
• Computer systems organization→ Real-time systems;

KEYWORDS
GPU, Deformers, Parallel Evaluation, Maya, Rigging, Animations
ACM Reference Format:
FunShing Sin, Parag Havaldar, and Vinod Melapudi. 2021. Real Time Inter-
active Deformer Rig Evaluations in Maya using GPUs. In Special Interest
Group on Computer Graphics and Interactive Techniques Conference Talks
(SIGGRAPH ’21 Talks), August 09-13, 2021.ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3450623.3464666

1 INTRODUCTION
Deformers are computation nodes in Maya that are used to de-
form meshes and are essential building blocks in our character rigs.
Skinning, Binding, Relaxing are some examples of deformers. A de-
former node takes mesh(es) as input, modifies the vertex positions,
and returns the deformed mesh(es) as output. The deformations
are effected by parameters such as floating points (smoothItera-
tions in deltaMesh), matrices (joints in skinCluster), and meshes
(targetShapes in blendShape). We categorize deformers into two
types depending on whether they take additional meshes as input
in their computation:

Type I: Deformers affected by additional parameters in their
computation but do not use additional meshes.
e.g., skinCluster, deltaMush, relax.

Type II: Deformers affected by additional mesh(es).
e.g., blendShape, wrap.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8373-8/21/08.
https://doi.org/10.1145/3450623.3464666

Figure 1: Production rigs, Sylvanas, Venthyr, Jailer.

In a production rig, character meshes are usually affected by
multiple deformers. Given a chain of deformers, Maya is able to
run all deformers on GPU if either of the following is true:

• the chain has Type I deformers only.
• the chain contains Type II deformers, and the mesh parame-
ters are static/non-animating (e.g., Figure 2a).

Unfortunately, if a Type II deformer has mesh parameters that
are non-static/animating (Figure 2b), Maya evaluates the upstream
deformers (connecting to the mesh parameter) on CPU 1.

The rigs developed at Blizzard Animation heavily relies on such
deformers. So this limitation significantly affects the performance
of such rigs when animating. So even with availability of GPU
implementations of those deformers, our test rig runs only at around
5fps.

2 SOLUTION FOR SMALL SCALE RIGS
While investigating the above-mentioned limitations, we observed
that when an animated mesh is passed as a parameter to a deformer,
that mesh does not get loaded on GPU. The reason for this is illus-
trated in Implementation 1. The GPU evaluate function accesses the
animated meshB’s data via the MDataBlock. Anything that accesses
MDataBlock must be on CPU prior this evaluation. Our initial so-
lution was to introduce a pass-through deformer upstream whose
job is to initiate the loading of all meshes into GPU memory. The
DAG is then modified to have deformers sequentially evaluated on
GPU where each deformer accesses their needed mesh(es) via GPU
device memory pointers. This is illustrated in Implementation 2 & 3
which ensures all computation on the GPU and the modified DAG
is shown in Figure 2c. The performance gain using this method
was not significant, improving from 5fps on CPU to 12fps on GPU.
The main reason for this modest increase is because the individual
meshes being deformed have vertex counts less than 2K which does
not make significant use of GPU throughput.

1Autodesk has addressed this issue in Maya 2022, achieving similar speed up as the
first solution discussed in section 2. We present further improvement in section 3.

https://doi.org/10.1145/3450623.3464666
https://doi.org/10.1145/3450623.3464666

SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA Sin F., Havaldar P., and Melapudi V.

3 SOLUTION FOR LARGE SCALE RIGS
For large scale rigs, combining all meshes into one mesh should
yield a better throughput from GPU. Correspondingly the meshes
were appended together sequentially to keep track of vertices and
faces of individual meshes. The vertex range information (which
decides which verts belong to various deforming submeshes) are
passed along to each deformer. Each deformer in the modified DAG
(Figure 2d) sequentially evaluates and deforms only the requisite
vertices from the combined mesh. Another alteration that needs
mentioning is the change in the usage of many skinClusters. Since
the modified DAG allows only one skinCluster at the root of the
deformation chain, we combine the binding information from all
the skinClusters and create one super-skinCluster that affects the
combined mesh. Artist workflows could be impacted by such mesh
combinations. For instance, artists may toggle visibility of meshes
for performance/workflow reasons. Such workflow needs can be
reintroduced on a case-by-case basis in this combined setup – eg
visibility could be now controlled by transparent shader, or even
additional deformers that collapse the vertices to one point. Addi-
tionally, by combining meshes, we also benefited from avoiding
many world-to-local space conversions. The performance gains
using this method have been 10x as illustrated in Table 1.

4 CONCLUSION AND FUTUREWORK
The limitations of evaluating deformations completely on GPU
within Maya, made our character rigs not interactively animatable
for our artists. To overcome those limitations, we first detailed on
how a PassThrough deformer, that loads dependent meshes on GPU,
helped our deformations fully evaluate on GPU. And to further sup-
port larger scale rigs, we detailed our approach of combining the
isolated mesh pieces and deforming them by vertex range. Our
solution has shown significant speedup in rig evaluation. Our an-
imators have tested and verified the interactivity they gain with
the modified rigs. We are currently addressing the changes in our
rigging process and the various proprietary deformers to benefit
our future productions.

Table 1: Performance on Maya Parallel mode with i7-7820X
and GTX 1080

#Vertices CPU (fps) GPU (combined mesh, fps)
Sylvanas 198k 5 50
Venthyr 408k 3 36
Jailer 270k 2 30

ACKNOWLEDGMENTS
We thank Changyaw Wang, Shaik Sadiq, Martin Bisson, Martin De
Lasa, Aloys Baillet, and Andy Lin.

1 DSta tus Type I I : : e v a l u a t e (MDataBlock& db , . , c on s t MGPUDeformerData& inData , .) {
2 / / a . g e t meshA v e r t i c e s from GPU b u f f e r (s P o s)
3 MGPUDeformerBuffer bufferMeshA = inData . g e t B u f f e r (sPos i t i onsName ()) ;
4 / / b . g e t meshB v e r t i c e s from MDataBlock (cpu)
5 MArrayDataHandle i tA r r a y = db . i npu tAr rayVa lue (Type I I : : i n pu tT a r g e t) ;
6 MFnMesh inputTargetMFn (i tA r r a y . i npu tVa lue () . asMesh ()) ;
7 / / c . s end meshB v e r t i c e s from MFnMesh t o MAutoCLMem
8 / / d . enqueue a de fo rm k e r n e l t h a t a c c e s s e s meshA ' s & meshB ' s GPU clmem
9 }

Implementation 1: TypeII forces inputTarget on CPU

1 c l a s s PD : p u b l i c MPxDeformerNode { . . . } ;
2
3 MStatus PD : : i n i t i a l i z e () { . . .
4 meshBAttr = t A t t r . c r e a t e (" meshB " , " meshB " , MFnData : : kMesh) ; . . .
5 }
6
7 / / t h e ups t r eamNode . wor ldMesh [0] w i l l be c o n n e c t e d t o pd . meshB
8 con s t MObject PDRe g i s t r a t i o n I n f o : : i n pu tMe shA t t r i bu t e () { r e t u r n PD : : meshBAttr ; }
9
10 c l a s s PDGPU : p u b l i c MPxGPUDeformer { . . .
11 MAutoCLMem clMemMeshA ; / / GPU memory s t o r i n g meshA v e r t i c e s p o s i t i o n
12 } ;
13
14 DSta tus PDGPU : : e v a l u a t e (MDataBlock& db , . , c on s t MGPUDeformerData& inData ,
15 MGPUDeformerData& outData) {
16 / / a . g e t meshB v e r t i c e s from GPU b u f f e r (s P o s)
17 MGPUDeformerBuffer buf ferMeshB = inData . g e t B u f f e r (sPos i t i onsName ()) ;
18 / / b . s end s t a t i c meshA t o GPU i f haven ' t done b e f o r e
19 i f (! clMemMeshA . ge t ()) {
20 MArrayDataHandle adhMeshA = db . inpu tAr rayVa lue (DD : : i npu t) ;
21 MDataHandle hMeshA = adhMeshA . i npu tVa lue () ;
22 MFnMesh meshA (hMeshA . c h i l d (DD : : inputGeom) . d a t a ()) ;
23 / / s end meshA v e r t i c e s from MFnMesh t o MAutoCLMem / clMemMeshA
24 }
25 / / c . t h e downstream de f o rme r / mesh p i c k s up v e r t i c e s from
26 / / s P o s i t i o nName by d e f a u l t . So we s e t s P o s p o i n t i n g t o meshA
27 MGPUDeformerBuffer upda t edBu f f e r SPo s (sPos i t i onsName () , . , clMemMeshA , .) ;
28 outData . s e t B u f f e r (upda t edBu f f e r SPo s) ;
29 / / d . move meshB v e r t i c e s from s P o s t o a new b u f f e r c a l l e d " meshB "
30 MUniqueStr ing strMeshB = MUniqueStr ing : : i n t e r n (" meshB ") ;
31 MGPUDeformerBuffer updatedBuf ferMeshB (strMeshB , . , buf ferMeshB . b u f f e r () , .) ;
32 outData . s e t B u f f e r (updatedBuf ferMeshB) ;
33 / / e . r e t u r n now and no need t o do any mesh d e f o rma t i o n s
34 }

Implementation 2: PassThrough Deformer (PD)

1 DSta tus Type I I : : e v a l u a t e (MDataBlock& db , . , c on s t MGPUDeformerData& inData , .) {
2 / / a . g e t meshA v e r t i c e s from GPU b u f f e r (s P o s)
3 MGPUDeformerBuffer bufferMeshA = inData . g e t B u f f e r (sPos i t i onsName ()) ;
4 / / b . g e t meshB v e r t i c e s from GPU b u f f e r
5 MUniqueStr ing strMeshB = MUniqueStr ing : : i n t e r n (" meshB ") ;
6 MGPUDeformerBuffer buf ferMeshB = inData . g e t B u f f e r (strMeshB) ;
7 / / c . enqueue a de form k e r n e l t h a t a c c e s s e s meshA ' s & meshB ' s GPU clmem
8 }

Implementation 3: TypeII gets meshes from GPU buffers

Figure 2: (a) A sample TypeII (blendShape)with a staticmesh
at inputTarget. (b) A Type II deformer with a non-static
mesh at inputTarget (c) All deformers are on GPU with PD.
(d) All deformers are on GPU with our combined mesh. The
groupParts and tweak nodes are skipped for clarity.

	Abstract
	1 Introduction
	2 Solution for small scale rigs
	3 Solution for large scale rigs
	4 conclusion and future work
	Acknowledgments

