
Cartoons in the Cloud
Yun Lien

Pixar Animation Studio
Emeryville, CA, USA

yun@pixar.com

Michael O’Brien
Pixar Animation Studio
Emeryville, CA, USA
mobrien@pixar.com

Laura Savidge
Pixar Animation Studio
Emeryville, CA, USA
lsavidge@pixar.com

ABSTRACT
The SparkShorts program at Pixar Animation Studios allows for di-
rectors to try new and different looks. Our short, Twenty Something
is a 2d, hand-drawn animated film. When the pandemic forced all
of our artist to work from home, we scrambled to create a workflow
for managing, sharing, and reviewing 2d assets. While we have a
long history of collaborating on 3d films, we did not have a solution
for 2d imagery.

We created a cloud-based pipeline based around on-premises
bucket storage, microservices, and event-driven workflows. The
result was Toontown, a suite of technologies that allowed our artists
to complete Twenty Something working from home.

ACM Reference Format:
Yun Lien, Michael O’Brien, and Laura Savidge. 2021. Cartoons in the Cloud.
In Special Interest Group on Computer Graphics and Interactive Techniques
Conference Talks (SIGGRAPH ’21 Talks), August 09-13, 2021. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3450623.3464680

Figure 1:Twenty Something explores why adulting is so hard.
©Disney/Pixar

1 INTRODUCTION
In March of 2020, the state of California issued a Shelter-In-Place
(SIP) order for the entire state, sending our artist home, many car-
rying their workstations with them. At the time, our short flim,
Twenty Something was about to begin production. Before SIP, we
had done some early exploration of the department structure we
wanted for the project.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8373-8/21/08.
https://doi.org/10.1145/3450623.3464680

Figure 2: Twenty Something departments. ©Disney/Pixar

In order to complete the show, we created a Pipeline as a Service
(PiaaS) for managing and sharing 2d assets, called Toontown. On
the artist end, we wanted to use Adobe’s PhotoShop, Adobe’s After-
Effects, TV Paint’s TV Paint Animation, and Autodesk’s Maya®all
on OSX. We had a little experience with those tools, but nothing
formal to manage how to pass data between them. Our resulting
design needed to allow each department to operate within their
application, but still share data downstream. In order to do this,
Toontown supports complex associations of assets, defines a suite
of services that can be provisioned per show, and provides a user
interface to manage those services.

2 TOONTOWN OVERVIEW
Looking at the pipeline from a file-centric view, Toontown con-
sumes data from editorial, provides a working space for our pro-
duction departments, and then synchronizes back with editorial
once final images are available.

Figure 3: Toontown pipeline design. ©Pixar

Reading from left-to-right, editorial produces an audio file repre-
senting the shot’s dialog which is checked into Perforce and copied
to the diskfarm file system by our video encoder system, takeMake.
Those files are processed by a microservice and transferred up to
bucket storage and indexed into an ElasticSearch database. Via
another microservice, files are mapped from the user’s machine
for consumption by Toontown and the Digital Content Creation
(DCC) application. Toontown publishes files back to bucket storage
for consumption by a microservice to manage translation between
application file types and final frame creation. The resultant files
become usable by both editorial and downstream departments.

https://doi.org/10.1145/3450623.3464680
https://doi.org/10.1145/3450623.3464680


SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA O’Brien, G. et al

3 ASSET MANAGEMENT
Assets are separated into a source file for the DCC and the genera-
tive files needed for the next stage of production. For example, an
animator needs to author a TV Paint file (*.tvpp), but that file is not
consumable by AfterEffects. The tvpp file needs to be translated
into a set of layered exrs corresponding to each layer in the tvpp
file.

Each source file is tracked using an on-prem object store that ad-
heres to the s3 protocol. The contents of the bucket are indexed as a
set of metadata documents in an ElasticSearch database. Where our
traditional pipeline references assets via unix-style paths, Toontown
provides a many-to-many document index that a client queries. The
resulting document provides the bucket location and metadata. The
client can then decide how to map the resulting bucket to the user’s
machine.

Our traditional pipeline looks in multiple paths to resolve the
final version of that asset, using path fragments as metadata. This
can be costly and brittle. In Toontown, the location of the asset
data is fully independent from how it is resolved. The ElasticSearch
index is used as a flexible backend to find assets. The database
can contain multiple records for a single bucket which allows for
multiple methodologies for clients to find a bucket. This allows a
single background image to be referenced into multiple shots, "Find
me the background painting for this shot." The file can be found
through larger queries, "Find me all of the files for this shot." It also
allows us to create indices for specific use cases. For example, we
can create a set of documents based on abstract concepts, "Find
me all of the paintings in a kitchen." The file’s contents are fully
separated from the resolution.

The client can then map the bucket to different locations on
the user’s local machine based on the use case. Our artists doing
background paintings would like all of the paintings to be in one
directory named after the shot. Our compositors would like the
background painting to be mapped into multiple, per-shot directo-
ries. Since the bucket’s data is shared, publishing a new version of
a bucket notifies all clients to refresh their version of the data.

4 SERVICE SUITES
Toontown is powered by independent microservices connected via
events. The design is constructed around a microservice providing
a small, department-specific piece of functionality.

Each microservice is written in JavaScript and provisioned on
our in-house Kubernetes cluster as a web-service. Starting a new
show requires spinning up each service needed for the show’s
pipeline. Using a PaaS for provisioning significantly reduces the
time to set up a new show. Additionally, since each show uses its
own instances of the services, the services can be turned off after
the show is complete. Toontown’s modular architecture makes it
easy for a show to experiment with new workflows or applications.
For example, if a show decides to try another animation package,
only the animation services need to be replaced to recognize the
new DCC file. If a show decides they want to use just AfterEffects to
construct graphics, the microservices for handling other file types
do not need to be provisioned at all.

Our events are hosted on our on-prem Kafka servers. Kafka
provides event producer and consumer modules for any language

we use at Pixar, and many of our tools emit events for key state
changes. Since Toontown is also using the same event bus, we can
share and merge workflows written in different departments. For
example, a take from editorial can trigger a take event causing
Toontown to update the latest take. Toontown, itself, can also emit
the same event when animation updates their latest animation
thereby creating a new take. The same event feeds into the system.

While we chose to use on-prem infrastructure for this first show,
our use of standard components offered by cloud service providers
allows us flexibility to run portions of the Toontown pipeline on a
commercial cloud platform with minimal changes.

5 USER INTERFACE
Our 2d shorts are staffed by our more traditional artists and ani-
mators. Toontown needs to provide a simple workflow for them.
Since Toontown was developed, frantically, during the start of the
pandemic, it was important the interface could be updated quickly,
deployed easily, and share as much code between the different
department workflows.

Toontown is built as an embeddablewebappwritten in JavaScript,
like the microservices, allowing code sharing between the interface
and the backend code.

Figure 4: Toontown user interface. ©Disney/Pixar

As a standalone application, Toontown provides an Electron app
running a small webserver in the background. The artist is pre-
sented with a set of cards indicating active inventory based on data
from our Oracle production database. Behind the scenes, Toontown
is actively aggregating and synthesizing data from our production
database, the ElasticSearch database for bucket information, and
the bucket storage to map files to the artist’s machine.

As a webapp, Toontown can also be embedded in Adobe’s prod-
ucts using their Common Extensibility Platform (CEP). This allows
Toontown to interact with all of the same backend services as the
electron version, but also control DCC specific properties, like syn-
chronizing frame ranges between editorial and AfterEffects.

6 CONCLUSION
Toontown was instrumental in completing Twenty Something dur-
ing the pandemic. It also provided the opportunity to explore how
cloud-based pipelines can shape our view of how to find and man-
age data. Looking forward, we anticipate taking the concepts of
what was learned on Toontown and exploring how we can utilize
them in our 3d pipeline.


	Abstract
	1 Introduction
	2 Toontown Overview
	3 Asset Management
	4 Service Suites
	5 User Interface
	6 Conclusion

