The Right Foot in the Wrong Place

Half-Life Character LocomotionCharacter Locomotion in Half-Life: Alyx

Joe van den Heuvel
Software Engineer, Valve Software
joev@valvesoftware.com

ABSTRACT

This paper describes the non-player character locomotion system
developed for the VR game Half-Life: Alyx. Our solution uses a
stride retargeting system, footstep prediction, and a custom motion
matching system to animate humanoid and non-humanoid char-
acters as they navigate tight, dense virtual environments in real
time.

CCS CONCEPTS

« Applied computing — Computers in other domains; Personal
computers and PC applications; Computer games.

KEYWORDS
Animation, Virtual Reality, VR, Games

ACM Reference Format:

Joe van den Heuvel, James Cunliffe, and Eddie Parker. 2021. The Right
Foot in the Wrong Place: Half-Life Character LocomotionCharacter Loco-
motion in Half-Life: Alyx. In Special Interest Group on Computer Graph-
ics and Interactive Techniques Conference Talks (SSIGGRAPH °21 Talks), Au-
gust 09-13, 2021, Virtual Event, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3450623.3469664

1 INTRODUCTION

Character movement in virtual reality presents some unique chal-
lenges for character locomotion, while also requiring high anima-
tion quality. Our solution consisted of 3 main parts. The first part
is a stride retargeting system that would analyze the motion of the
character’s feet offline, store it as a direction-independent trajec-
tory, and then use that information at runtime to modify the steps
of the character to ensure that they traveled exactly along a given
path. The second part was an enhancement to the game’s existing
animation system to leverage the stride metadata to predict the
location where the feet will land next and modify it by adjusting
the root motion of the animation. And the third part was a motion
matching system that would continuously pick the best animation
to play based on the desired path and the phase of the current stride.

2 STRIDE RETARGETING

Our Stride Retargeting system is based on the semi-procedural loco-
motion system described by [Johansen, 2009]. We improved upon

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH °21 Talks, August 09-13, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8373-8/21/08.

https://doi.org/10.1145/3450623.3469664

James Cunliffe
Animator, Valve Software
jamesc@valvesoftware.com

Eddie Parker
Software Engineer, Valve Software
eddie@valvesoftware.com

it by developing a more robust step detection algorithm, support
for multiple strides in the same animation, support for non-linear
root motion, including the horizontal rotation of the foot as part
of the stride data, and a novel storage format that handles stride
overshoot and in-place steps.

The system works by first defining a ‘footbase’ as a shadow of the
foot that remains horizontal, and the lowest part of the character’s
foot must always be in contact with it (See Figure 1).

As an offline process, we would find all the strides taken by
all the character’s animations and record the frame, position, and
rotation of the footbase relative to the root of the character at the
start and end of the stride. Then we would calculate the position
and rotation of the footbase relative to the stride for each frame
of the animation. These footbase “trajectories” would be stored
to disk alongside the animation data as Progression value, and a
position and rotation offset. Progression is the interpolation value
between the previous and next footstep, and TranslationOffset and
RotationOffset are the stride-relative offsets from the interpolated
position and rotation.

Given a set of locations in the world for a previous and next
footstep, the flight of the foot could then be recreated each frame
by interpolating the position and rotation of the previous and next
footsteps based on the Progression and adding the offsets. The
resulting motion preserves the general motion and timing of the
footbase from the animation even if the direction, length, and height
of the stride are different from the original.

3 FOOTSTEP PREDICTION

At runtime, we would use the foot motion metadata to look up
the time when the next footstep would land based on the current
animation, and then how much distance the character would travel
during that time. We would then predict the future location of
the character in the world by advancing their current position
along their current path by the calculated distance. Body yaw ro-
tation is also considered based on the current traversal mode of
the character, such as whether they should turn to face down the
path or maintain a heading that allows them to face a target. From
the predicted character position and rotation, we would use the
character-relative position and rotation offsets for the end of the
current stride that were saved as part of the offline pre-process to
determine the horizontal location of where the foot will be when it
lands and perform a ray-cast against the ground to determine its
height. With both previous and next footstep positions known, we
could then animate the position of the footbase over time from one
to the other by calculating its position for each frame based on the
precalculated trajectory data and use the footbase as an IK target
to animate the leg. The effect is that the footsteps follow along the
path, while preserving the characteristics of the original animation.


https://doi.org/10.1145/3450623.3469664
https://doi.org/10.1145/3450623.3469664

SIGGRAPH 21 Talks, August 09-13, 2021, Virtual Event, USA

Joe van den Heuvel et al.

Figure 1: Illustrating the relationship of the foot to the footbase. The lowest part of the foot always touching the footbase. This
way the foot can land and take off without sliding while the footbase is stationary.

Using this technique, we could slow the character’s speed with-
out introducing any foot sliding simply by scaling the amount of
root motion of the animation. This was useful in cases such as going
up and down steep slopes or turning sharp corners. By scaling the
vTranslationOffset value from the footbase trajectories, we could
effectively reduce the height of the footsteps in proportion with the
amount we scale the root motion, so the amplitude of the strides
matched the length. We would also scale the root motion so that
run-to-stop animations would end exactly at the end of the path,
with the feet coming to rest at the correct locations without sliding.

This system applied equally well to creatures with more than two
legs, and all the nuance of the original animations was preserved,
including any intentional foot sliding, twisting, jumping, and even
kicks.

4 MOTION MATCHING

The stride retargeting allowed us to make any of our animations
walk in any direction, but extreme changes in direction from the
original animation would yield unnatural movement. The best re-
sults were when the original and the altered movement directions
were relatively close. We needed another system that would auto-
matically pick animations to play that were ‘close enough’ to the
direction the path was going, which is exactly what motion match-
ing does: search the frames of the set of available animations and
find one that most closely matches the current state of the character
and some desired state such as a future position or velocity.

The motion matching implementation described by [Clavet,
2016] and [Zadziuk, 2016] suggested calculating multiple samples
of the desired future positions along the navigation path for the
character based on a spring equation to simulation the acceleration
of the character over time. These samples would then be compared
to the locations where each animation would take the character
after the same time intervals. In practice, we found that the accel-
eration rates in our data set was so varied that we were not able to
come up with settings for the spring equation that produced sam-
ples that matched all the acceleration curves of our data, resulting
in the search failing to correctly pick the best available animation.
Instead, we created the future position samples based on distance
instead of time. Le.: sample the path ahead at several fixed distances,

then sample where the animations would be after having moved
the same distance, regardless of how long it would take them to
get there. Doing this produced much more accurate results when
scoring animations for how well the fit the desired future state.

We augmented our search algorithm to include filters as well as
metrics. Filters would work by rejecting a sample that was outside a
certain range, which was useful for forcing the matching algorithm
to do the correct thing in problem situations. For example, we added
a data channel to the motion matching data set that contained the
distance remaining in the animation before it came to a stop. We
could then apply a filter to the search so that all animation samples
that did not reach the end of the path would be rejected, ensuring
that the search would return a clip that would take the character
all the way to the end.

We were able to make use of the footstep metadata to help the
search select good transition points as well. Specifically, we could
search for clips that matched the current stride progression and
the position of the foot. We also limited the times when the motion
matching system picked a new clip to when a foot was on the
ground, as this allowed us to avoid awkward transitions where the
character appeared to change direction in mid-air.

REFERENCES

Rune Skovbo Johansen. 2009. Master’s Thesis “Automated Semi-Procedural Animation
for Character Locomotion”

Simon Clavet. 2016. “Motion Matching - Road to Next-Gen Animation”, Game Devel-
oper’s Conference 2016

Kristjan Zadziuk, 2016. “Motion Matching — The Future of Gameplay Animation. . .
Today”, Game Developer’s Conference, 2016



	Abstract
	1 INTRODUCTION
	2 STRIDE RETARGETING
	3 FOOTSTEP PREDICTION
	4 MOTION MATCHING
	References

