
Shadows Optimizations in Cyberpunk 2077
Bartłomiej Dybisz

bartlomiej.dybisz@cdprojektred.com
CD PROJEKT RED
Warsaw, Poland

Michał Witanowski
michal.witanowski@cdprojektred.com

CD PROJEKT RED
Warsaw, Poland

ABSTRACT
This talk presents significant rendering-related CPU and GPU opti-
mizations concerning shadows in Cyberpunk 2077. Given the scale
of the game and the variety of platforms that it has to support,
different solutions had to be implemented and coupled in order
to fulfil the time and memory requirements. We also introduce
our take on runtime and offline techniques for object culling and
shadow maps caching in order to minimize potential overhead. The
article concerns three different shadow types that can be spotted
around Night City: cascaded, distant, and local shadows.

KEYWORDS
shadows, rendering, optimization, culling
ACM Reference Format:
Bartłomiej Dybisz and Michał Witanowski. 2021. Shadows Optimizations
in Cyberpunk 2077. In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Talks (SIGGRAPH ’21 Talks), August 09-13,
2021. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3450623.
3464679

1 INTRODUCTION
Efficient rendering of shadows was one one of the bigger challenges
we encountered during the development of Cyberpunk 2077. Due
to Night City’s verticality and density, the amount of meshes and
triangles required to be rendered into shadow maps greatly exceeds
those we dealt with in the The Witcher 3: Wild Hunt. Moreover,
Cyberpunk 2077 supports a full day-and-night cycle. Because the
city is vast and the shadows need to be visible from far distances
in order to maximize believability, we had to implement numerous
optimizations to reduce the number of meshes being drawn, which
translated to both CPU and GPU times reduction.

2 GLOBAL SHADOWS
Global shadows are used for the Sun and the Moon directional light
sources, and are implemented as cascaded shadow maps [Rouslan
and Sainz 2007]. Nearby and dynamic objects rely on per-frame
rendered shadow maps, referred to as cascaded shadows later on.
Similarly as in [Kasyan 2013], distant objects rely on shadows re-
freshed periodically, where rendering is spread overmultiple frames.
These are referred to as distant shadows. We use up to 4 levels of
cascaded shadows and 4 levels of distant shadows.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8373-8/21/08.
https://doi.org/10.1145/3450623.3464679

2.1 Distant shadows
In order to handle directional light shadows over the vast area of
Night City, rough shadow map data which covers the entire map
is needed. Distant shadows also provide shadow information for
objects that are out-of-screen, which is crucial for indirect lighting,
such as: reflection probes, global illumination, and ray-traced re-
flections. The shadow cascades span a box around the player, each
one 4 times bigger than the previous one. The last cascade covers
the whole 256 km2 map.

Rendering of distant shadows is pretty straightforward and does
not require special attention as we can control the per-frame budget
we spend on it. Usually, rendering all meshes takes several frames,
so the shadow map is refreshed every few seconds. However, care
had to be taken while collecting the meshes to be drawn, as this
step cannot be spread over frames. With this in mind, we performed
multi-threaded frustum culling and sorted the meshes to achieve
optimal batching. We also set the limits of how many meshes and
triangles can be rendered in one batch.

2.2 Cascaded shadows
Initially, we used a "Map-Based Cascade Selection" approach as
described in [S. White and Satran 2018], which means that all the
cascades share the same near plane, and during shading we picked
the best resolution cascade level. While this approach ensures the
best shadow map space utilization, it quickly became evident that it
leads to many objects being rendered unnecessarily, and also leads
to uneven shadow resolution throughout the screen-space, depend-
ing on light and camera angle. Thus, we opted to use "Interval-Based
Cascade Selection" which means that we select cascade level in a
shader based just on pixel depth. This way, only those meshes with
projections that intersect with the camera frustum slice should be
considered during shadow map rendering. This enabled us many
culling opportunities, as described in the following sections. Al-
though a lot of shadow map texture space is left unused, we alias
the memory with HUD and post-process passes.

2.2.1 Frustum culling. Naive implementation of cascaded shadows
[Rouslan and Sainz 2007] assumes culling meshes against cuboid-
shaped, 6-plane frustum. This can lead to drawing meshes that will
never contribute to shadows within the main camera frustum slice.
To solve this issue, we constructed a tight convex shape enclosing
the frustum slice comprised of up to 8 planes. The box-frustum
intersection test is SSE-optimized so, in case of regular 6-plane
frustum, two SSE lanes remained unused. This way, switching to
the test against an arbitrary 8-plane convex shape was basically
free. An example culling shape is presented in the Figure 1.

2.2.2 Main view occlusion culling. The occlusion buffer of the main
camera is used to discard meshes when their shadows are fully
occluded by other geometry. We compute the oriented bounding

https://doi.org/10.1145/3450623.3464679
https://doi.org/10.1145/3450623.3464679
https://doi.org/10.1145/3450623.3464679


SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA Bartłomiej Dybisz and Michał Witanowski

Figure 1: The image shows a shape used for shadow culling.
The camera frustum slice is stretched towards the light
source direction. Planes highlighted in orange come from
the original frustum shape. Blue ones, however, are gener-
ated from the frustum edges and direction vector In this
case, the final shape is made up of 8 planes.

box of a mesh bounding box stretched along the direction of the
light. This is especially helpful in tight indoor areas.

2.2.3 Shadow view occlusion culling. Finally, we capture the first
level of distant shadow map and use it as an occlusion buffer from
the light’s point of view. This helps to reject specific meshes that
were not already excluded by the time-of-day visibility mechanism
described in the following section.

2.3 Time-of-day visibility
Not all meshes contribute to shadows. Some of them are fully in-
cluded in other objects’ shadows (please refer to Figure 2). In order
to leverage that fact we introduced an offline system for establishing
mesh visibility from global shadows perspective. The information
is measured at 12 time intervals (every 2 hours) using objects IDs
rasterization and baked into mesh instances. This way, depending
on the time of day, in the runtime we can record mesh drawcall for
global shadows or completely drop it.

Given the vast area of Cyberpunk 2077’s world, taking a couple
of snapshots of the whole map at different hours is not possible
due to texel precision. Instead, we split the game’s area into smaller
sectors and process them separately. Each sector is further chopped
vertically and analyzed including 8 neighboring sectors in order
to account for potential inter-sectors occlusion. The process was
integrated in nightly builds, so that it catches up with new content
submitted by artists.

The time-of-day visibility system proved to be worth implement-
ing. Although stabilising it and educating artists was not an instant
process, in the end we were able to decrease the number of triangles
rendered for global shadows by millions.

3 LOCAL SHADOWS
Not only does Cyberpunk 2077’s world cover a significant area, but
it also consists of very dense environments full of artificial light
sources. In order to achieve high and consistent visual fidelity, a
remarkable number of lights were required to cast shadows (hence-
forth called local shadows). In order to address the issue, several
systems were incorporated into the game.

For each frame, artists have a fixed amount of shadow maps to
work with. All shadow maps can capture static objects, but only

Figure 2: The image shows the blue box not contributing to
orange box’s shadow. The dotted line represent the Sun ray
and bold horizontal line is the produced shadow.

some of them process moving geometry. Shadow maps are picked
based on their visibility, and their distance from the player’s camera.
Visibility is calculated by leveraging the geometry of the already
existing light channel system placed around the city by hand. In
case a local shadow casting light’s frustum intersects the geometry
that is visible (tested against CPU occlusion buffer), we consider it
as visible. For example, in this way shadows that are encapsulated
by a closed room won’t be collected unless you can see the room’s
interior.

Refreshing shadow maps in a frame is throttled, and allows only
a certain amount to update per frame (depending on the platform).
Notably, resolution differs between platforms. Since most of the ar-
tificial light sources do not move, we furthermore split each shadow
map into static and dynamic slices in order to cache as manymeshes
as possible.

On top of that, each shadow casting light has an additional radius
and outer angle designated in order to render shadows. We also
introduced a system which dynamically changes character meshes
rendered to shadows in order to amortize the associated overhead
of processing them on less-powerful machines.

Local shadows implementation was a challenging task. Consid-
ering the number of shadow maps we wanted to support, and the
denseness of the environment overall, we coupled more and more
systems in order to reduce the cost. We provided constant assis-
tance to artists, sharing our knowledge with them to help make
their work more conscious of, and aligned to, system constraints
and interactions.

REFERENCES
Nikolas Kasyan. 2013. Playing with Real-Time Shadows. SIGGRAPH.
Dimitrov Rouslan and Miguel Sainz. 2007. Cascaded Shadow Maps. (Aug.

2007). https://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_
shadow_maps/doc/cascaded_shadow_maps.pdf

M. Jacobs S. White, D. Coulter and M. Satran. 2018. Cascaded Shadow Maps. Re-
trieved February 12, 2021 from https://docs.microsoft.com/en-us/windows/win32/
dxtecharts/cascaded-shadow-maps

https://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
https://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
https://docs.microsoft.com/en-us/windows/win32/dxtecharts/cascaded-shadow-maps
https://docs.microsoft.com/en-us/windows/win32/dxtecharts/cascaded-shadow-maps

	Abstract
	1 Introduction
	2 Global shadows
	2.1 Distant shadows
	2.2 Cascaded shadows
	2.3 Time-of-day visibility

	3 Local shadows
	References

