A Bouncing Ball Game for First-Year Computer Graphics

Neil A. Dodgson
Department of Engineering and Computer Science
Victoria University of Wellington
neil.dodgson@vuw.ac.nz

ABSTRACT

A bouncing ball is one of the simplest physics simulations yet
provides a novice graphics programmer with a host of useful ex-
perience. The student creates a ball that bounces off the walls of a
box, adds a bat, then gamifies the whole experience into a simple
block-out game. The assignment is designed as the first significant
piece of programming on a 2D computer graphics course. It is de-
signed to be accessible to students who have taken an introductory
programming course and who have physics and algebra to the level
of a high-school graduate.

CCS CONCEPTS

+ Computing methodologies — Physical simulation; Collision
detection;

KEYWORDS

education,animation,graphics,simulation

ACM Reference Format:

Neil A. Dodgson. 2018. A Bouncing Ball Game for First-Year Computer
Graphics. In Proceedings of SSGGRAPH ’18 Educator’s Forum. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3215641.3215653

1 INTRODUCTION

A bouncing ball is straightforward to implement yet enormously
fulfilling for the student because something that requires just a
few lines of code suddenly comes to life when the code is run. The
student develops a better understanding of simple vector mathe-
matics, discrete physical simulation, and the sorts of things that
can go wrong with even such a simple scenario. This is the second
assignment on our first-year undergraduate course “Introduction
to Computer Graphics” [Dodgson and Chalmers 2017].

2 MATERIALS

Students are given a lecture on the basics of physical simulation of
a bouncing ball including the lecturer spending 20 minutes demon-
strating in class how to write code to make a ball bounce off the
sides of the graphics window. Students are provided with a work-
sheet that takes them through some basics of physical simulation;
this is designed that students can work through it in one hour in a
lab class. The combination of these two means that a student who

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH 18 Educator’s Forum, August 12-16, 2018, Vancouver, BC, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5884-2/18/08.

https://doi.org/10.1145/3215641.3215653

Table 1: CGEMS metadata
Summary A block-out game in Processing. Topics:
simulation, algebra, collision detection,
instancing
Learning outcomes Core: understand basic physical simula-
tion, simple vector mathematics. Com-
pletion: instancing. Challenge: more
challenging vector mathematics.

Classification (1) Animation, (3) Fundamentals

Audience CS1

Dependencies introductory programming, high-
school algebra and physics

Strengths students enjoy seeing their code cause
a physical animation

Weaknesses students with weak mathematics find it
difficult to get beyond the basics

Variants adding gravity makes a more challeng-
ing assignment; the “challenge” part of
the assignment gives two ways in which
the assignment could be upgraded for a
higher-level student cohort

Assessment students are assessed on a number of

binary achieved/unachieved goals (e.g.,
does the ball move, does it bounce off
the sides) and on a graded measure of
code quality

has paid attention will be trivially able to complete about a third of
the credit for the whole assignment.

This assignment was designed to be implemented in the lan-
guage Processing [Reas and Fry 2015]. Students are expected be
familiar with Processing or to be familiar with Java and have had
an introduction to Processing. We provide lectures, a laboratory
session, and an assignment on introductory Processing for students
who have Java experience.

We choose to provide no code framework for this assignment:
students must program it from scratch. This is reasonable because of
the way Processing is designed to be accessible to a novice program-
mer. Using another language for this assignment may require the
instructor to provide a framework so that students can concentrate
on the learning objectives rather than on building the scaffolding.

3 STRUCTURE

This assignment has three sections: core, completion and challenge.
A C-grade student would be expected to complete the core to a
good standard. An A-student will complete core and completion to
a good standard. The challenge part of this assignment is to stretch

https://doi.org/10.1145/3215641.3215653
https://doi.org/10.1145/3215641.3215653

SIGGRAPH ’18 Educator’s Forum, August 12-16, 2018, Vancouver, BC, Canada

the best students. We allocated just 10% of the credit for this final
part to allow A-grade students the ability to choose whether or not
to devote time to the challenge.

3.1 Core assignment

The core is to implement a ball and a bat.

Outline specification. Implement a moving ball in 2D that bounces
off the sides of the window. Add a bat, an axis-aligned rectangle
that is controlled by the mouse. The ball must bounce off the bat in
a plausible manner, but it does not need to be physically accurate.

Comments. Bouncing off the sides of the window requires sub-
tlety because the ball has a finite radius that must be taken into
account in the intersection calculations. Bouncing off the bat is
more challenging. We added the condition that the bouncing be
“plausible” rather than “physically accurate” after our experience in
the first year of running this course, where we found that many of
the better students got stuck on how to handle the case when the
ball hits a corner of the bat. The weaker students did not realise
that there was a problem and so we had the situation of the better
students spending far longer on the assignment than was necessary.
For bouncing off the window’s sides, the student needs to consider
four cases: one for each side. For bouncing off the bat, we ask them
to consider only the same four cases. This can lead to odd behaviour
when the ball bounces off a corner of the bat, but that is acceptable
for the core assignment; we ask students to fix this behaviour in
the challenge part of the assignment.

In the first two years of running the course, we gave the students
the option of adding gravity to the simulation. Gravity adds the
challenge that the simulation becomes unstable: a naive implemen-
tation will have a ball that noticeably loses or gains energy. It was
beyond most of the students to recognise that this instability is
a problem and, if they did, fixing it is non-trivial. Therefore, we
only recommend adding gravity to the assignment, with supporting
lecture material, if repurposing this assignment for higher-level
graphics students.

3.2 Completion assignment

The student “completes” the assignment by gamifying what they
have produced into a version of the block-out game.

Outline specification. Add a number of rectangular obstacles off
which the ball bounces. Turn this into a game. Each rectangle will
have a colour that indicates its status: green = never hit, yellow =
hit once, red = hit twice. When a rectangle has been hit three times
it vanishes. The aim of the game is to remove all the rectangles.

Comments. This teaches students about instancing graphical
objects and maintaining status for each instance. There is a nice
touch that the static obstacles and the moving bat can reuse the
same intersection code. The students need to ensure that their
additions to handle the static obstacles do not also apply to the
bat: it cannot change colour or vanish. The vanishing is a useful
point for marking. Some students will make an obstacle “vanish”
by painting it the same colour as the background. You need to
determine whether this is a clever hack or a point of failure. Some

Dodgson

students will fail to turn off intersections with vanished obstacles:
this is clearly wrong.

In the traditional block-out game, the obstacles are identical
rectangles in a rectangular grid at the top of the window. Most
students implement this. Some students, however, take the approach
of putting rectangular blocks of varying sizes at random locations.
This is not an error and such students are worth noting to see how
such independence of thought plays out in later assignments.

3.3 Challenge assignment

We provided students with a choice of two challenges, A and B,
either of which would give them full marks.

Outline specification. Option A. Go back to just the ball simula-
tion (the core) and make a simulation that allows multiple balls,
all interacting with one another. Once you have it working, set up
some sort of demonstration to show to your assessor, for example,
implement drag and gravity then simulate a bunch of balls being
poured into a container.

Option B. Building on top of the completion assignment, make
the bat/ball interaction robust. Ensure that the ball bounces cor-
rectly off the bat if it hits a corner. Ensure that, if the ball and bat
are both moving, the ball still bounces off the bat rather than them
appearing to pass through one another. You should also aim that
the bouncing is physically accurate.

Comments. Both of these are interesting assignments in their
own right. The first requires some careful calculations to make the
balls bounce off one another correctly. Students can find tutorials
on the web in how to do this. We like the idea of making students
think up their own demonstration that their algorithm works, as
this helps them to consider how you would test a physical simu-
lation for correctness and allows them to scope how they want
to be assessed. The second option is based on our observations
of the subtle inaccuracies in most students’ implementations. In
particular, almost no student considers that both the bat and ball
can be moving; they assume that the bat is stationary, forgetting
that the user is able to move the bat at high speed.

4 TAKING THIS FURTHER

The two challenge assignments described above are both viable
options for all students to attempt on more advanced courses. It
is also possible to specify that the game be made considerably
more polished. As an example of this, look at the first game in our
course’s 2016 showreel: https://vimeo.com/196225486 (students on
our first-year course are required to write a 2D game as the capstone
assignment; a few choose to use the bouncing ball as the foundation
for their game; one of the best is showcased in the video).

ACKNOWLEDGMENTS

Thanks to Dr Andrew Chalmers for leading the tutorial team that
provided feedback on the first iteration of the assignment.

REFERENCES

Neil A. Dodgson and Andrew Chalmers. 2017. Designing a Computer Graphics Course
for First Year Undergraduates. In EG 2017 — Education Papers. The Eurographics
Association, 9-15. https://doi.org/10.2312/eged.20171020

Casey Reas and Ben Fry. 2015. Getting Started with Processing (2"¢ ed.). Maker Media.

https://vimeo.com/196225486
https://doi.org/10.2312/eged.20171020

	Abstract
	1 Introduction
	2 Materials
	3 Structure
	3.1 Core assignment
	3.2 Completion assignment
	3.3 Challenge assignment

	4 Taking this further
	Acknowledgments
	References

