Creating Next-Gen 3D Interactive Apps with Motion
Control and Unity3D

SIGGRAPH 2014 Workshop
Lecturers:

Daniel Plemmons
UX Researcher and Software Engineer
Leap Motion

David Holz
CTO and Co-Founder
Leap Motion

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must be honored. For all
other uses, contact the Owner/Author.

SIGGRAPH 2014, August 10 — 14, 2014, Vancouver, British Columbia, Canada.

2014 Copyright held by the Owner/Author.

ACM 978-1-4503-2977-4/14/08

Abstract

Modern native and web-based games and applications continue to push the boundaries of production
quality and interactive complexity. Tools and techniques traditionally reserved for large teams building
state-of-the-art gaming applications are now becoming the tools of choice for small game and application
developers. Thanks to recent advances in motion control, developers can immerse users in a natural
interface controlled directly by their bodies, which can be mapped with stunning real-time accuracy into
the virtual space.

This course combines the powerful and versatile Unity3D engine with the Leap Motion Controller to
demonstrate a modern toolkit for developing consumer-accessible next-gen 3D applications. Through a
series of live-coded examples, attendees will be grounded in the fundamentals of using the Unity3D
engine for game and application development, integrating the Leap Motion Controller into an application,
and designing and developing a next-generation 3D interactive application with motion control. Attendees
need not have advanced knowledge of 3D game engines or motion control, though an understanding of
C# or similar languages, along with some knowledge of basic linear algebra concepts, will be useful. The
course will also cover broader issues around motion-control interaction design.

As natural interface technologies are on the rise, the question of input is taking on an increasingly
important role. In this diverse interface landscape, devices like the Oculus Rift, Sifteo, Leap Motion
Controller, PS Move, Kinect, and others present unique challenges to developers, as choices about
interaction aesthetics begin with the crucial question of input hardware.

About the Lecturers

Daniel Plemmons
UX Researcher and Software Engineer
Leap Motion

Daniel is an interactive media creator who is passionate about exploring the border between the physical
and digital worlds. A graduate of the Savannah College of Art and Design in Atlanta, his work spans
mainstream mobile games played by millions, site-specific games for gallery shows, an IndieCade finalist
physical installation game, Twitter bots, and natural user interface design for a variety of new and
emerging technologies. He tweets @randomoutput and his work can be found at
RandomOutputDesign.com.

David Holz
CTO and Co-Founder

Leap Motion

David is an inventor and mathematician who loves to solve fundamental problems. After reading Stephen
Hawking's A Brief History of Time in eighth grade, he devised a simple way to test the theory of general
relativity. While studying Applied Math at the University of North Carolina at Chapel Hill, he worked for
NASA. Frustrated by the limits of 3D design — where it takes an hour to create what a five-year-old can
do with a lump of clay in five minutes — David left his PhD program to start Leap Motion.

Course Overview

15 Minutes: Setting Up Our Development Environment
Downloading and installing Unity3D

Setting up the Leap Motion Controller

Setting up the Leap Motion SDK

Setting up a new Unity3D project with the Leap Motion Controller

O O O O e

10 Minutes: The Modern Motion Control Landscape
o A brief overview of the current state of motion-control application technologies and
evolving design principles
Motion control in games and interactive media
Key questions — when is motion control the right decision, and where does each
technology fit in the interactive ecosystem?

10 Minutes: An Introduction to the Leap Motion API
o This section will be presented as live-coded examples and annotated in the notes
The Leap Motion Starter Kit
Understanding the coordinate space
How to interpret and think about sensor data
Visual feedback and presence using rigged hands

O O O O

20 Minutes: Live Coding — 3 Techniques for Motion Interaction
o 1:1 2D mapping
o Direct manipulation
o Gestural abstraction

30 Minutes: Understanding and Building Feedback Loops in Interactive

Applications
o The limitations of motion control

m Motion control interfaces lack the foundational subconscious audible and haptic

feedback that users and developers have become reliant on
o Building foundational feedback for user interactions

m Motion control applications must develop their own foundational language for

feedback with the user

Table of Contents

Section 1: The Motion Control Landscape

11
1.2
1.3
14
15

Section 2
2.1
2.2
2.3
2.4

Section 3
3.1
3.2
3.3
3.4

Primary Contexts of Motion Control Applications
Selected Works Using Motion Control in Modern Gaming
Selected Works Using Motion Control in Art Installations
Use of Motion Control in Virtual Reality

When is Motion Control the Right Decision?

: Three Techniques for Motion Control Interaction

1:1 2D mapping
3D Direct Manipulation
Gestural Abstraction

Combining Techniques

: Understanding and Building Feedback Loops in Interactive Applications

The Need for Dynamic Feedback
Comparing and Contrasting Mouse versus Motion Applications
Heuristic Lenses for Motion Interaction Design

Getting the Most Out of Gesture Space

Section 1: The Modern Motion Control Landscape

While popularly associated with science fiction and high-tech interfaces, motion controls have played a
role in the human-computer interaction space for decades. Historically, they have fallen within the
purview of large, expensive art installations, or professional and industrial applications. Over the past
decade, however, the convergence of modern hardware and computer processing advancements has made
consumer use of motion controls a realistic proposition.

This course will focus on using Unity3D and the Leap Motion Controller — hardware and software
solutions squarely focused on the consumer market — to create applications for this market. Before
approaching application development, a cursory exploration of the recent history of the motion control
space is necessary.

1.1 Primary Contexts of Motion Control Applications

In futurist popular culture and media, motion control is often depicted as a ubiquitous part of everyday
life. Though this may someday be the case, today there exist only a few specific contexts in which motion
control has been widely applied, with varying levels of success. Developing the next generation of motion
control applications in these spaces, or extending motion control into new domains, requires an
understanding of how each context has impacted the design and adoption of its respective motion control
applications.

The following sections will discuss, at a high level, the following set of contexts for motion control
applications: gaming, artistic installations, and the new wave of consumer virtual reality (typified by the
emergence of the Oculus Rift). These are not intended to be exhaustive, but to serve as a common set of
touchpoints for the further critical examination of motion control design, and to ground the rest of the
course discussion in the state of the art as it exists today.

1.2 Selected Works Using Motion Control in Modern Gaming

There are far too many motion-controlled games to discuss the full range of experiences in this section.
Instead, we will discuss two common goals of motion control in gaming, and present modern examples of
games which typify these goals.

Player immersion is often touted as a prime goal of motion-controlled games. Underlying much of this
goal is the reasoning that if a player’s body is more involved in the play experience, and simulating real-
world actions, then they will feel more immersed in the experience. Take, for example, this quote from
the Amazon.com page for the Playstation Move motion controller:

PlayStation Move redefines motion gaming with the most immersive and realistic gaming
experience only possible on the PlayStation3 system. The simple, easy-to-use controller captures
a full range of motion giving you ultimate control over how you play the game. With a diverse

selection of games and new ones launching all the time, you can enjoy hours of fun with friends
and family.*

Dance Central. One of the most successful and direct applications of this thinking is the Dance Central
series for the Microsoft Xbox 360 using the Kinect 3D motion tracking camera.? Dance Central was
preceded by a wide variety of rhythm and dance games, including Dance Dance Revolution, Rock Band,
and Guitar Hero. The Kinect sensor made it possible for Dance Central to make use of real-time full
body tracking.

In Dance Central, an on-screen avatar performs a repetitive set of dance moves, set to popular music.
Players must mirror the on-screen avatar and are scored on the accuracy of their movements via the data
from the Kinect sensor. As players improve their execution, the difficulty of moves increases, along with
the accuracy demanded by the game’s scoring system.

Dance Central and its sequels hit upon a confluence of game and technology to create immersive
interactions. A broad set of realistic dance actions are reasonably trackable by the Kinect sensor, and the
scoring system is opaque enough to render tracking inaccuracy a non-issue. The player interactions so
closely mimic real world actions that they create a greatly enhanced sense of immersion in comparison to
previous motion-control dance titles.®

Johann Sebastian Joust. In contradistinction to the goal of immersion, many successful motion-control
titles instead draw attention to the motion controls themselves — focusing on players performing silly or
difficult actions to create entertaining experiences. One excellent example is Die Gute Fabrik’s critically
acclaimed motion-control game Johann Sebastian Joust:

“The rhetoric goes that motion control is supposed to be like the Holodeck or virtual reality,” says
[Die Gute Fabrik game designer Doug] Wilson. “People expect it to be more immersive, because

you’re actually doing the actions. But it’s never like that, because all these controllers are kind of

goofy and the technology is actually pretty crude, and will continue to be crude for years.... We’re
years away from being Hamlet on the Holodeck.”*

JS Joust draws from the legacy of folk and field games to create a unique motion-control experience.’
Each player holds a PlayStation Move controller as an electronic rendition of Johann Sebastian Bach’s
Brandenburg Concerto #2 plays with a varying tempo. The goal of the game is to force other players to

! Sony, “Playstation Move Motion Controller,” Amazon.com, accessed June 7, 2014,
http://www.amazon.com/Playstation-Move-Motion-Controller-3/dp/B00210J51U.

2 «Dance Central 2,” MetaCritic, accessed June 7, 2014, http://www.metacritic.com/game/xbox-360/dance-central-2.
% Julye Huggins, “Dance Central 2: Review from IGN,” The Dance Current, January 2, 2012,
http://www.thedancecurrent.com/video/dance-central-2-review-ign.

* Kris Graft, “Three Factors that Stand in the Way of Motion Controls’ Future,” October 8, 2013,
http://www.gamasutra.com/view/news/201841/Three_factors_that stand_in_the_way of motion_controls_future.p
hp.

® Douglas Wilson, “Designing for the Pleasures of Disputation, or How to Make Friends by Trying to Kick Them!”
manuscript for Ph.D. dissertation at the IT University of Copenhagen, August 13, 2012,
http://doougle.net/phd/Designing_for_the Pleasures_of Disputation.pdf.

move their controller quickly. If the accelerometer in the controller detects too high a spike, the player is
out. The tempo of the music determines how sensitive the game is to movement.

In this way, JS Joust draws the player’s attention directly to the motion-control experience. The resulting
game dynamics include players tiptoeing about each other as if caught in slow motion. Elegant spins,
quick feints, gambits, and more than a small amount of shoving are common. The simplicity and physical
freedom of the game also afford interesting social behaviors.® As a result, the game focuses more on
drawing attention to the bodies and movements of the players and the playspace than to immersion in any
particular simulation or fantasy.

Each of these games sits on opposite ends of a continuum ranging from immersion to self-awareness.
Though proponents of each design style may speak ill of the other (as seen in Wilson’s quote above),
where a work lies along the continuum is not so much a quality judgement as a lens through which to
understand and critically evaluate the work.

1.3 Selected Works Using Motion Control in Art Installations

Motion control, particularly in the form of computer vision — such as the works of Golan Levin’ and
Brian Knep® — has been at play in the new media arts world for many years. In this section, we will
examine two pieces of interactive art in which motion control was used to create a unique physical and
multimedia experience, while at the same time lowering the entry barrier for public performances.

Growth. Craig Winslow’s 2013 work Growth is an interactive motion-controlled installation featuring
projection mapping. In Growth, viewers interact with an abstract virtual jungle, which forms an
environment that can be modified by the viewer’s actions.

® Griffin McElroy, “Folk Lore: How Johann Sebastian Joust is Defining a New Gaming Genre,” Polygon, February
22, 2012, http://www.polygon.com/2012/10/12/3494404/folk-lore-how-johann-sebastian-joust-is-defining-a-new-
gaming-genre.

" See http://www.flong.com.

& See http://www.blep.com.

According to Winslow:

The most powerful moment for me was seeing a mother and her two boys interact with complete
awe. Once they knew they were in control of the experience, they waved their hands, wiggled
their fingers — but in a very respectful way. It reminded me of a quote by Robert Irwin | was told
near the beginning of the project, which influenced our intent more than | knew: “You can’t plan
nature; you court her.”®

The use of motion control in Growth allowed viewers to interact in a unique, natural fashion, not
otherwise afforded by traditional interfaces:

Embracing the natural way we would expect people to interact with the device, we made slow
soothing movements augment lighting, while aggressive swipes brought in black recursive
animations.... Leap Motion amplified the story we were trying to tell, as the viewer’s human
interaction contributed to impact dynamically on the installation.™

While Growth allows for natural interactions from individual viewers, Rafael Lozano-Hemmer’s
Frequency and Volume is a prime example of how motion control can be used to draw the public into a
piece of performance art. In Frequency and Volume, the viewers’ shadows on the gallery wall generate
the work.™ According to Lozano-Hemmer:

° Kate Mitchell, “Growth: Art Installation Powered by Leap Motion,” Leap Motion Blog, October 4, 2013,
https://www.leapmotion.com/blog/growth-art-installation-powered-by-leap-motion.
10 H

Ibid.
1 «|_ozano-Hemmer wants you to interact,” Metro.co.uk, October 12, 2008, http://metro.co.uk/2008/10/12/lozano-
hemmer-wants-you-to-interact-24615.

Frequency and Volume enables participants to tune into and listen to different radio frequencies
by using their own bodies. A computerised tracking system detects participants’ shadows, which
are projected on a wall of the exhibition space. The shadows scan the radio waves with their
presence and position, while their size controls the volume of the signal. The piece can tune into
any frequency between 150 kHz and 1.5 GHz, including air traffic control, FM, AM, short wave,
cellular, CB, satellite, wireless telecommunication systems and radio navigation.12

1.4 Use of Motion Control in Virtual Reality

The emerging world of consumer virtual reality offers a new set of opportunities for motion control.
Much like the introduction of motion controls to traditional gaming, virtual reality experiences often seek
to create an additional sense of immersion. Though heated discussions are taking place, the larger
development community has yet to standardize on any particular set of input devices.

We can identify two varieties of motion control for VR — physical controllers, such as the Razer Hydra,
and Wiimote; and in-air controllers, such as the Kinect and Leap Motion Controller. Each category has its
own advantages and drawbacks. Physical controllers have the advantage of tactile feedback, buttons, and
additional analog inputs. They can be more generalized and abstracted to many uses.*® In-air devices
allow for more natural input with less hardware overhead, but are more specialized for particular
interactions as they are optimized to imitate particular real-world interactions. As VR technologies
approach the consumer market in the near term, motion-control interfaces are approaching a crossroads
with huge implications for the long term.

12 Rafael Lozano-Hemmer, Frequency and Volume, accessed June 7, 2014, http://www.lozano-
hemmer.com/frequency_and_volume.php. Image from Jessica Lack, “Artist of the week no 11: Rafael Lozano-
Hemmer,” TheGuardian.com (Oct. 15, 2008), accessed June 7, 2014,
http://www.theguardian.com/artanddesign/2008/oct/15/art1

3 For example, see Reed Albergotti, “Virtual-Reality Company Survios Gets $4 Million in Venture Funding,”
Digits, May 19, 2014, http://blogs.wsj.com/digits/2014/05/19/virtual-reality-company-survios-gets-4-million-in-
venture-funding.

10

1.5 When is Motion Control the Right Decision?

No one wants to write a novel using just a mouse, or create a 3D design with nothing but a keyboard.
Similarly, not every project is the right fit for motion control, and developers must contrast their goals
with the relative advantages and drawbacks of the input options available.

Motion control is best suited to interactions and experiences where developers wish to: increase
immersion; bring attention to the players’ bodies and the play space; create multimedia experiences that
respond to natural interactions; make complex or abstract pieces more accessible; or provide natural
inputs for virtual reality. In all cases, it should augment the experience (e.g. connecting with abstract
nature in Growth) or remove a fundamental obstacle (e.g. the inability to see your real hands in virtual
reality).

Section 2: Three Techniques for Motion Control Interaction

In this section, we will cover three techniques for interacting with virtual spaces with motion control. The
details of setting up the development environment are best explained by Leap Motion’s developer
resources,™* while an explanation of Unity’s development environment is detailed in their
documentation.’® We will briefly review Leap Motion and Unity3D for those who are unfamiliar, and in
this section will discuss the implementation theory and the pros and cons associated with each technique.
A few key code snippets are included in these notes; additional relevant code snippets will be provided at
course time. These implementations will assume the use of Leap Motion’s Version 2 Tracking SDK.

2.1 1:1 2D mapping

One-to-one 2D mapping is the simplest of the three techniques discussed in the course. This refers to
taking the X and Y space position of the hand or finger, normalizing that location within a defined
interaction space, and mapping that location onto the 2D space of the screen.

For a variety of reasons, many Ul design problems lend themselves well to 2D interactions. A designer
may need to adapt an existing interface to gestural control, or the information design of a set of relevant
interactions lends itself strongly to 2D interaction. Implementing 2D mapping in Unity3D with Leap
Motion is relatively trivial.

We will use a common technique for separating Ul rendering in Unity from world space rendering. We
will then create a new camera in the scene, and set it to render an orthographic view above the main world
camera. We also change the clearing settings to allow the world camera to be viewed through any blank
areas of our Ul camera.

“eap Motion Developer, accessed June 7, 2014, https://www.developer.leapmotion.com.
> Learn with Unity, accessed June 7, 2014, http://unity3d.com/learn.

11

ion Culling

Next, we are going to be mapping a 2D cursor onto our Ul layer. First, we create the cursor and set it to

be rendered by our Ul camera. Then we will add a script to the cursor to move it based on the user’s hand.

Unity allows developers to attach individual scripts describing behavior to an object as “components.”

This component model allows for small simple scripts to be combined to create more complex behaviors,

as will be shown later in the course.

Using Leap Motion’s hacker helper, we convert the Leap Motion data into a Unity3D Vector3 type:
Vector3 handPosition = mainHand.PalmPosition. ToUnity Translated();

We can then convert this data to Unity world coordinates. This uses a very simple normalization
technique, as each axis of data is given a minimum and maximum value in the configuration. Incoming
Leap Motion frame data is then fed in and normalized according to these configurations.

float normalizeValue (float value, float min, float max) {
return (value - min) / (max - min);

}

/INormalize

handPosition.x = normalizeValue(leapPosition.x, _leapMin.x, _leapMax.x);
handPosition.y = normalizeValue(leapPosition.y, _leapMin.y, _leapMax.y);
handPosition.z = normalizeValue(leapPosition.z, _leapMin.z, _leapMax.z) * -1;

//Set to world coordinates

handPosition.x = _worldMin.x + (handPosition.x * (_worldMax.x - _worldMin.x));
handPosition.y = _worldMin.y + (handPosition.y * (_worldMax.y - _worldMin.y));
handPosition.z = 10;

12

Given these world coordinates, and a camera, we can project these screen coordinates onto the camera,
and then back into the world along a particular plane. This plane will be rendered as our user interface. As
we have an orthographic camera, moving game objects forward and back in space will cause them to be
rendered in front of or behind other items in our UI.

screenPosition = _leapManager._mainCam.WorldToScreenPoint(handPosition);
uiPosition = _leapManager._mainCam.ScreenToWorldPoint (new Vector3(screenPosition.x, screenPosition.y,
uiPlane));

Given these world space coordinates, we simply set the location of the cursor game object.
transform.position = uiPosition;

Running the project and placing a hand over the Leap Motion Controller should show the hand in space.

2.2 3D Direct Manipulation

Direct manipulation represents a more skeuomorphic design approach for virtual space. Skeuomorphic
designs use references to real-world objects and experiences to help a person interacting with a system
craft a mental model as to how that system behaves.*® These sorts of orientation aids are often helpful
when introducing people to new technologies or interfaces. As an interface matures, however,
skeuomorphic designs will often take a back seat to visual styles more suited to the nature of the
technology or interaction medium, as has been seen with the evolution of the iOS mobile operating
system:

When we sat down last November (to work on iOS 7), we understood that people had already
become comfortable with touching glass, they didn’t need physical buttons, they understood the
benefits.... So there was an incredible liberty in not having to reference the physical world so
literally. We were trying to create an environment that was less specific. It got design out of the
way.

— Jonathan Ive'’

As discussed previously, natural user interfaces have been in use for decades in various contexts and
applications. Whether or not a particular interface element is in need of skeuomorphic treatment depends
on audience, context, and the purpose and behavior of the interface element itself. It is worth noting that
the skeuomorphic properties of direct manipulation dovetail nicely with the goals of immersion and
presence — common to virtual reality applications — that we discussed in Section 1.2.

To explore direct manipulation, this course will use some prebuilt Unity3D components. Leap Motion has
released a set of hand controllers and models intended to act as a starting framework for Unity3D
developers building direct manipulation applications. Not only does the hand controller use Leap Motion

18 Clive Thompson, “Clive Thompson on Analog Designs in the Digital Age,” Wired.com, January 31, 2012,
http://www.wired.com/2012/01/st_thompson_analog.

7 Buster Hein, “Jony lve Explains Why He Decided To Gut Skeuomorphism From iOS 7,” Cult of Mac, September
19, 2013, http://www.cultofmac.com/246312/jony-ive-explains-why-he-decided-to-gut-skeuomorphism-out-of-ios.

13

data to drive a visual representation of the hand, it also drives a set of colliders tied into Unity’s physics
engine. Both the visual and physical components of the hand controller are fully customizable by the end
developer.

To begin exploring the hand controller, we will open the Block Pit example distributed with the Leap
Motion version 2 tracking SDK.*® As we can see in the scene hierarchy, in addition to an interaction
space and a number of blocks, the scene includes a HandController component.

i= Hierarchy

To see how this works, we can place the scene and place a hand over the Leap Motion Controller. A
skeletal representation of a hand then appears in the scene and is able to interact directly with the blocks.
By pausing the player with our hand still in the scene (sometimes a tricky operation) and switching to
Unity’s scene, we can examine the structure of the hand.

In this way, we can see that the HandController object spawns two new GameObijects. The first listed is a
RigidHand, which contains the generated physics objects and colliders being driven by the Leap Motion
Controller data. The second is the SkeletalHand GameObiject, which is the visual representation of the
hand. As the visual and physical representations of the hand are independent, each can be separately
customized or removed, depending on the needs of the end developer.

18 «“Block Pit,” Leap Motion Developer, accessed June 7, 2014, https://developer.leapmotion.com/gallery/block-pit.

14

To achieve the physical interactions with the blocks we see in the demo, we simply attach rigid body and
collider components to the blocks and the hand. This allows us to push, pull, and sort through each of the
individual blocks in a relatively natural manner. But these interactions alone are limited. Developers will
find it very difficult to simply reach in and pick up an individual block. The limitations of the physics
engine, along with the lack of haptic feedback from a motion controller, stymies these sorts of
interactions. We will need to give our simulation a hand. (The author requests that readers pardon this
truly horrible pun.) This is where gestural abstraction plays a part.

2.3 Gestural Abstraction

Gestural abstraction represents a very different set of interaction concepts than the previous two
techniques. Rather than interacting directly with an on-screen element, gestures allow particular actions or
poses of the hand to be mapped to specific in-application commands. Gestures can be both motive or
simple poses. For the purposes of this course, we will add a simple “pinch” gesture to our block demo,
allowing the user to pick up an individual block.

To enable the ability to pinch and pick up a block, we can write a short script and attach it to the rigid
hand. This demonstrates both the ease of using the Leap Motion API and the power of Unity3D’s
component-based system.

Finger index = Finger.Invalid;
Finger thumb = Finger.Invalid;
Vector3 indexPosition;

Vector3 thumbPosition;
Vector3 pinchPoint;
GameObject pinchTarget;

_hand = _rigid.GetLeapHand();

if(_isPinching) {
foreach(Finger finger in _hand.Fingers) {
if(finger.Type() == Finger.FingerType. TYPE_INDEX) {
index = finger;
}
else if(finger.Type() == Finger.FingerType. TYPE_THUMB) {
thumb = finger;

}

if(index != Finger.Invalid && thumb !'= Finger.Invalid) {
indexPosition = index.Bone(Bone.BoneType. TYPE_DISTAL).NextJoint. ToUnityScaled();
thumbPosition = index.Bone(Bone.BoneType. TYPE_DISTAL).NextJoint. ToUnityScaled();
pinchPoint = indexPosition + (0.5f * (thumbPosition - indexPosition));
pinchPoint = _handController.transform.TransformPoint(pinchPoint);
pinchTarget = getNearestPinchable(pinchPoint);
pinchTarget.transform.position = pinchPoint;

15

if(_hand.PinchStrength <= _endPinch) {
_isPinching = false;
}
}
else {
if(_hand.PinchStrength >= _startPinch) {
_isPinching = true;
}
}

When the script detects a pinch, it finds the nearest reasonable pinchable GameObject (defined with a
tag), and adjusts that object’s transform to match the movement of the point halfway between the thumb
and index finger. When the pinch value reported by the Leap Motion API is no longer within an
acceptable range, the pinch is released. This pinch-and-release logic is just one simple example of a useful
technique known as hysteresis — the application of a previous application state upon future application
logic. In this case, we use slightly different values to define a pinch start versus a pinch end. This creates
a dead zone between the two values that reduces the chances of someone accidentally beginning or ending
a pinch.

2.4 Combining Techniques

These interaction paradigms need not be used separately. Leap Motion’s creative application Freefrom
uses all three techniques to allow the user to interact with various elements of the interface. Freeform is a
sculpting application in which users can use direct manipulation to shape the 3D surface of the clay. The
application also contains a variety of tools and options, available through a set of radial menus, which are
controlled in 2D via a 1:1 mapping of world space to application space. Finally, Freeform’s menus can be
brought in and out of view via a gesture — the spreading or coming together of the user’s hands. Each of
these interactions is well-adapted to each particular feature.

Section 3: Understanding and Building Feedback Loops in
Interactive Applications

3.1 The Need for Dynamic Feedback

At Leap Motion, we’ve found that when considering motion control design, it can be helpful to focus
more on the transitions between various application states than the states themselves. Due to the analog
nature of the interactions inherent to motion control, constant visual feedback is critical to usability. To
account for this, designers must reconsider the structure of their visual and auditory feedback. Just as our
controls use motion, so must our feedback. We have previously referred to this as dynamic feedback."®

9 Daniel Plemmons, “Jumping Head First into Motion Control Design,” Gamasutra, May 28, 2014,
http://gamasutra.com/blogs/DanielPlemmons/20140428/216072/Jumping_Head_First_into_Motion_Control_Design

.php

16

As a user moves their body in the interactive space, the application should constantly respond to their
motions — communicating what the interface “cares about” at any given time. This is in contrast to most
traditional desktop and mobile design, where the interface only changes when the user directly interacts
with the game, because motion control lacks the obvious disengagement states of touch-based interfaces.
The nearest design analog on the desktop is hover effects on buttons, and it may help to think of dynamic
feedback as “super hover.”

The need for well-designed dynamic feedback is also apparent when we consider the limited set of
feedback vectors available to software applications utilizing motion control.

3.2 Comparing and Contrasting Mouse versus Motion Applications

The following is an extended excerpt from Daniel Plemmons’ article “Jumping Head First into Motion
Control Design.”®

While motion controls allow for a high degree of freedom and nuance, they lack many of the
traditional signals and feedback we’re used to from our hardware input devices. For example, let's
compare and contrast the physical and mental processes that take place selecting a button on a
web page, with a mouse and with the Leap Motion Controller.

The mouse version. (1) First, you put your hand on the mouse. You can feel it and you know the
mouse can “detect” your input (tactile feedback). You’ve declared your intent to interact with the
computer. You move the mouse along the table. It takes a moment for you to find your cursor on
the screen, but as long as that cursor moves when you move the mouse (visual feedback), you
know the mouse is working.

\EE 1 JUURNAL

|4 As of 12:38 PM EDT

+ Techv Markets+ MarketData Your

Alerts Columns Video Blogs Heard on the Street \!

N

s Higher Profit

ROy

Touch, sight, and proprioception all combine to let you move you'r mouse pointer quickly and easily.

% 1bid.

17

(2) You move your cursor towards the button. The feeling of resistance from the table and your
sense of proprioception (where the parts of your body lie in relation to each other) tell you how
far you’ve moved your arm. The cursor on the screen simply confirms your expectations. As the
cursor nears your target, your eyes focus on it, letting you correct your exact position. You’re not
thinking about it, but you’re constantly making tiny corrections as you move.

Hardware Mouse &
i | o o

v v v
v v v

The various feedback vectors available per platform.

5l 16 || &

(3) Your cursor crosses the boundary of the button, and it highlights (visual feedback).

(4) Your index finger presses down on the left mouse button (or left side of the mouse if you’re
on a Mac). You feel the resistance of the button and then the reassuring pop as you exert enough
force to depress it (tactile feedback). You also hear the ubiquitous “click” sound we’re all used to
(hardware auditory feedback). You’ve used this so much you know this means the computer has
registered your input. On the screen, the button confirms your input by changing color and/or
shading.

18

Eem——a ovvite
2014 As of 12:17 Py pT

:f: ¥ Tech~ Markets » Market Data

5& Alerts Columns Blogs

Cuts Its Cloth in the U.S.

Heard on 5."-

Addltlonal visual feedback communicates the system state.

(5) Within milliseconds, your finger releases its pressure on the button, you feel another “pop,”
and you hear the second half of the anticipated “click.” The main content area of the webpage
flashes white, the button you just pressed transitions from a light background to a dark one, and a
small spinner appears next to the name of the browser tab. All this confirms that your input was
registered by the website, and it is in fact navigating.

We experience this loop thousands of times per day as we “pick and click” our way through
modern desktop interfaces. It takes a 10th of a second, but each piece of feedback is key to the
efficient use of the mouse. When a piece of feedback returns an unexpected result, it tells us
immediately what’s wrong. Is your cursor not moving? Your mouse must be disconnected, or the
computer is locked up. Didn’t feel the button press? You’ve got a broken mouse. Did the button
not highlight? It’s probably disabled.

Notice how much of this loop is tactile and auditory. When you’re designing for motion control,
your interface must make up for these missing links in the feedback chain. We’re subconsciously
aware of a lot of information about the state of our hardware, and the application we control with
it. If we’re denied this by a lack of foundational feedback, we conclude an interface is
unresponsive, dodgy, confusing, or broken.

The motion control version. Now let’s take the common motion control version of these events
— moving to an item and selecting it. Many applications today like Photo Explore,” Touchless,?

2! Exteroceptive, PhotoExplore, accessed June 7, 2014, retrieved from
https://airspace.leapmotion.com/apps/photoexplore.

19

and Verticus® use an in-air “screen tap” gesture for selection. They use a cursor with dynamic
feedback to show the user when they’ve made a “click.” As you read this, it’s worth noting that
between touch, sight, and hearing, sight is the slowest responding of our senses.?

(1) You start by placing your hand in the area you expect the sensor to detect you and point with
your index finger. Assuming you’re in the right area, a cursor appears on the screen. Just like the
mouse, you may take a moment to find it (visual feedback).

(2) You move the cursor towards the button. You’re relying on your sense of proprioception and
watching the cursor to see when its in the right place. Each motion control application you’re
using has slightly different calibration, so it’s difficult to get a reliable sense of motion.

With in-air gestures you rely on sight and proprioception to help guide and steady your hand.

(3) As your cursor crosses the boundary of the button, it highlights — telling you it’s an active
interface element. You hold your hand steady in the air over the button. It’s relatively large, so
it’s not too hard.

(4) You push your finger forward, watching the cursor to make sure you keep your finger steady
pointing at the right item, making small adjustments as you push forward. As you move forward,
an inner circle on the cursor grows to meet the outer circle, signalling a “click” (visual feedback).

%2 eap Motion, Touchless For Windows, accessed June 7, 2014, retrieved from
https://airspace.leapmotion.com/apps/touchless-for-windows.

% Moonshark, Stan Lee’s Verticus, accessed June 7, 2014, retrieved from https://airspace.leapmotion.com/apps/stan-
lee-s-verticus.

% Robert J. Kosinski, “A Literature Review on Reaction Time,” Clemson University Department of Biological
Sciences, last modified September 2013,
http://biclogy.clemson.edu/bpc/bp/Lab/110/reaction.htm#Type%200f%20Stimulus.

20

Like this photo?

Dynamic on-screen feedback is critical to communicating system state.

(5) When the two circles meet, the main content area of the webpage flashes white, the button
you just pressed transitions from a light background to a dark one, and a small spinner appears
next to the name of the browser tab (visual feedback). Again, this confirms that your input was
properly registered. You drop your hand, relaxing the joints.

This flow seems quite useable, but challenges crop up when something along the line doesn’t
work properly. What if you don’t see your cursor? Is your hand simply too low or is it too far to
the right or is the device not working? What if when you push your finger in to “click™ and the
click doesn’t happen? Are you performing the gesture wrong? If so, how? What if the website
doesn’t take the click? Are you gesturing wrong or is the site at fault? Does this website even
support this motion tracker?

It’s up to the developers of motion control software to provide users with the answers to these
questions. This is where constant dynamic feedback can be a very useful tool. Don’t
underestimate the value of good audible feedback either. “Pops” and “clicks” can lend a sense of
physicality and don’t require your player to be focused on any individual on-screen element to be
useful.

At Leap Motion, we explored the usability impact of even a minor implementation of this dynamic
feedback, with encouraging results:

In an early prototype of the marching menu, we used static icons to inform users what sorts of
actions they could perform. However, users often didn’t associate these static icons with actions.
Some people tried tapping, others pinched, and others were just plain confused. When users did
make a selection, sometimes they didn’t know how they’d done it.

21

For the next iteration, we added some simple feedback, emphasizing the X-axis location of the
user’s finger relative to the currently selected button. In testing, users picked up on what they
were supposed to do quite quickly, but were often uncomfortable flinging their finger off a menu
item to select it. There was no indication of what would happen if they did.

With a little added polish though, the new users we tested with understood and started using the
menus with ease. We saw a real marked improvement from some very small changes — design
elements that reveal the menu’s behavioral structure at a glance. This sort of basic feedback is
great for all manner of menus.”

3.3 Heuristic Lenses for Motion Interaction Design

When designing interactions and gestures for an application, the teams at Leap Motion have used a
variety of strategies to design and iterate on our designs. From this has arisen a set of critical heuristic
lenses that we have found are useful for assessing gestural and motion interaction designs.

1. Tracking Consistency. How consistent is tracking, given one or more users performing this
motion many times in a real-world environment, and given that production applications need
95%-+ accuracy?

2. Ease of Detection. From a production and maintainability perspective, how difficult is it to
detect this motion with a high degree of accuracy across many users, both in terms of false
positive and false negative results?

3. Occlusion. Given the limitations of the device, does this interaction have a high chance of
causing occlusion? (For example, an interaction in which a user may reach a hand across the
field of view of the device has a high chance of causing the arm or a shirt sleeve to occlude a
majority of the hand.)

4. Ergonomics. Given the limitations of the human body and the intended use-case and
environment for the interaction, what are the ergonomic concerns? Can someone perform this
interaction while relaxed, or does it create unnecessary tension? Does repeated use become
stressful? Does the interaction require a vastly unnatural motion (e.g. trying to poke straight
ahead in Z-space while our hands want to move in arcs)?

5. Transitions. Given the complete interaction set in an application, how does this interaction
transition to others? Are the transitions clear and easy to learn? How easy are they to detect?
What happens in the case of ambiguous transitions? Each transition could easily be re-
evaluated with this same set of heuristic lenses.

% Daniel Plemmons, “Rethinking Menu Design in the Natural Interface Wild West,” Leap Motion Blog, accessed
June 7, 2014, https://www.leapmotion.com/blog/rethinking-menu-design-in-the-natural-interface-wild-west.

22

6. Feedback. Does this interaction lend itself well to having good feedback from the UI? As we
have seen in many of the above references, a lack of proper feedback can sink an otherwise
well-designed interaction.

It is important to note that these heuristics exist as lenses through which to critique and examine an
interaction, not as hard and fast rules.

3.4 Getting the Most Out of Gesture Space

Detection of gestures and analog motions is inherently fuzzy. To pack the most functionality into a single
application, an application can manage and modify its gesture detection and actions based on the current
state of the application. Limiting the number of possible transitions at any one time, and applying a
critical lens to the transitions possible from each state, an application can significantly reduce the number
of interactions that can damage the end user experience, in line with the classic Nielsen heuristic of error

prevention.?
. Out of Range
) «
K ’ Ak

Fist Drag
Left

Fist Drag
Down

The above diagram shows an example analysis of the possible motion or gesture transitions in an
application. Given each possible set of transitions, gesture detection code can be modified for the specific
cases, better separating gestures from each other as well as reducing the probability of false negatives.

% Jakob Nielsen, “10 Usability Heuristics for User Interface Design,” January 1, 1995,
http://www.nngroup.com/articles/ten-usability-heuristics.

23

