Arduino Drawing .
Machine Workshop UNIVERSITY
and Contest °r UTAH

Drawing machines.are computer_- ’ vc\ n COU ver
controlled mechanical constructions (SIGG RAPH 2 0-1 4

that move and make marks on \ The 41st International Conference and Exhibition
paper. They can be considered on Computer Graphics and Interactive Techniques
kinetic sculptures in their own right,

but they also make drawings as they

move, producing another type of art as their output.

This is a step-by-step course in the Studio on how to make the drawing machines, along with some
information about the history and practice of making sculptures that draw. This type of kinetic,
performative drawing sculpture has been explored by a wide variety of artists from the 18th
century onwards.

Logistics: All activities will be in the SIGGRAPH Studio

¢ Initial course - Sunday, August 10, 12:30-5:15

* Drop-in Project Space - Monday, Tuesday, Wednesday during regular Studio hours

e Gallery and Competition - Wednesday, August 13, 4:00pm
There will be a cash bar at the event and the Arduino drawing machines will be judged on
their overall design, function, and drawing produced by both the crowd and a special guest
judge. There will be prizes!

e This workshop is first come will be first served and supplies are limited.
The Sunday course participants will have priority for available hardware.

Instructors:

Erik Brunvand, School of Computing, University of Utah (elb@cs.utah.edu)
Ginger Alford, Trinity Valley School, Ft. Worth, TX (gralford@acm.org)

Paul Stout, Dept. of Art and Art History, Univ. of Utah (paul.stout@gmail.com)

Motivation: Arduino and microcontrollers like it have invigorated students, hobbyists, and
makers of all types to add electronics and computer control to their hand-made contraptions. The
integration of electronics and electro-mechanical components with computer control is known
more generally as physical computing.

A concise definition from Wikipedia is: Physical computing, in the broadest sense, means building
interactive physical systems by the use of software and hardware that can sense and respond to the
analog world.

For artists, this provides tools that enable interaction with people and the environment. For
engineers, this is an exciting and novel creative context for technology. For educators, this is a
powerful way to introduce programming and physical computing concepts to students from high
school to undergraduate and to students who might not normally be intrigued by a computer
engineering course.

The workshop will include a brief introduction to Drawing Machines, establishing a creative and
artistic context in which the technical content will be explored in the workshop. Workshop
participants will build (in teams) a simple drawing machine using foam core, nuts/bolts, and

Permission to make digital or hard copies of part or all of this work for personal or other uses, contact the Owner/Author.

classroom use is granted without fee provided that copies are not made or distributed ~ SIGGRAPH 2014, August 10 — 14, 2014, Vancouver, British Columbia, Canada.
for commercial advantage and that copies bear this notice and the full citation on the ~ 2014 Copyright held by the Owner/Author.

first page. Copyrights for third-party components of this work must be honored. For all ~ ACM 978-1-4503-2977-4/14/08

masking tape. The machine will be controlled using potentiometers and servos connected to an
Arduino microcontroller. Topics that are covered by this activity include basics of microcontroller
programming and electronic components, including how to use a breadboard, how to read a circuit
diagram and how to interact with the physical world using programmatic control of a variety of
input and output components.

Once the simple prototype has been constructed, teams will have the opportunity to modify,
enhance, and explore their machine’s operation to optimize both the machine’s appearance, and
the drawings that are made by their machine. The gallery event on Wednesday will be a chance to
show off both the machines and the drawings made by the machines. Our experience is that the
machines make relatively interesting drawings very quickly, but they make their most interesting
drawings if they're left to operate on their own for an extended period of time. A few lines are
interesting. A huge number of lines can be very interesting.

Figure 1: A harmonograph-style drawing machine made using laser-cut acrylic.

Contents of Kit
(one per team)
(please return after the workshop)

Arduino microcontroller (either Duemilanove or Uno)
Solderless breadboard

Wires for connecting components

Two “continuous rotation” servos

Two potentiometers (blue plastic)

USB cable

Masking tape

Shared supplies

Foam core board

Box cutters for cutting foam core (please cut on masonite cuttings boards)
Pens, pencils, markers, etc.

Extra servos

Extra wires

Extra potentiometers

Assorted screws, washers, nuts, etc.

Drawing papers rolls (cut off sections for making drawings)
Wood blocks for drawing machine supports

Extension wires for connecting servos to breadboard
Assorted LEDs

220Q resistors (red red brown stripes)

CDS light sensors (squiggly lines on flat top)

10kQ resistors (brown black orange stripes)

This document will show the construction of a
“harmonograph-style” drawing machine step by step in
pictures.

(All photos by Erik Brunvand)

Figure 2: A harmonograph-style drawing machine built using foam-core and masking tape. The disks rotate
using continuous-rotation servos. The speed and direction of the rotation is controlled by an Arduino
microcontroller using potentiometers (knobs) as input devices to provide user input. The “arms” of the machine
are connected in a pantograph linkage.

Overview: A “harmonograph” is a drawing machine that makes geometric patterns that are
related to the frequencies of activity on (at least) two actuators. The drawings made with this
technique are a class of drawings also known as Lissajous curves.

Harmonographs can be made using rotating platters (as seen in Figures 1 and 2) where the
relative speed and direction of the multiple rotating platters controls the figure being drawn. They
can also be built using multiple pendulums to provide multiple inputs at different frequencies, and
with a fixed rate of frequency decay. Essentially any system that has multiple axes of movement
controlled by periodic information of some sort draws the type of geometric figures that
characterize a harmonograph.

In this workshop teams will build machines similar to Figure 1 as a starting point. Teams will be
able to explore the potential of these machines, and to extend things in a variety of new directions,
through the week. The project culminates in a gallery show that opens on Wednesday at 4:00pm in
the Studio where crowd-sourced and juried prizes will be awarded.

Step 1 - Assemble the control circuits for the drawing machine.

The control circuit consists of two potentiometers (pots) that can be used to control the operation
of the machine. The potentiometers are variable resistors. The resistance between the center pin
and one of the end pins changes based on how far the knob is turned. This change in resistance can
be sensed by the Arduino. The sensing is achieved by connecting the potentiometer as a voltage
divider, and then sensing how the voltage changes as the knob is turned. You can test the control
circuits before assembling the full machine.

e e R L L
' \ A (B O\

___.464“q-q-|g‘n---‘-\-‘-\|--
. ‘alin A\ i\

Figure 3: The first step is to wire the 5v pin of the Arduino to the RED bus on the breadboard, and to wire one of
the GND pins of the Arduino to the BLUE bus of the breadboard. We’ll use these for powering the potentiometers
and the servos. Note that the potentiometers have three pins. You will place those pins in three different rows of
the breadboard so that you can make connections to each pin.

Figure 4: A potentiometer is a resistor with a center connection that you can move with the knob. The endpoints
of the main resistor are the outside pins on the potentiometer (Figure 1), and the movable center connection is
the center pin. You will wire one of the outside pins to 5v (RED), and one of them to ground (BLUE). It doesn’t
really matter which one you choose, although it will affect whether clockwise or counterclockwise rotation
corresponds to a larger voltage being sensed. You will wire the center (movable) connection (marked OUT in
this figure) to one of the analog inputs of the Arduino.

Figure 5: Here you can see how the three pins of the potentiometers should each get their own row of the
breadboard. I'll leave them out for now so that I can see where they're going to go. Eventually I'll gently push
them into the breadboard.

AR RO P)
1&lala}

.

slelwinlalninis
sllNislsiwi NI elel it
slaltulelaleiwlnlinlelol
elalnlalalnlalolalalal

ARaanAann s s n e s e e ev vl winlwl el ml i nlwiwinininliwlsI@ITIEEEL N

R R R A R R R R R R e e e e R R S R R R D L

R N N N IR T T T R R R R R R S B R

N R R R R R N r e L i

SR R R R R R e e e R e L R L R R
2 3 b

Figure 6: The solderless breadboad is what we'll use to make electrical connections for our controller. This
image shows how the breadboard is used to make connections. The RED and BLUE buses are connected
internally - anything connected to the bottom RED column will be connected together, for example. However,
the top RED and bottom RED columns are not directly connected. In the middle, each row of five holes is
connected internally. Any wires poked in any of the ABCDE (or FGHIJ) holes on the same row will be connected.

)
VA
AR

LU0 0 R Y GVATARY YLV Y LY Ry
VIR L

VU A S

e
® e A8 R EDR
Lo Lo Lo D U L D U ,:!
abbl’hhhﬂ | 1
B Aablilslrisixixls f'hnl‘[rllu'v ¥
L whade b b D e e L U T e U (R R R

i I
|]
| 1 | N 111 ALl \ LAY VAN
| BRI R R VT T AT R B v iy e
i AR ISR R TR) | 1) 1 CLUO DT AT A GV LR R RS A

Figure 7: Here I've wired the right pin of each pot to the RED (5v) bus, and the left pin of each one to the BLUE
(ground) bus. I've used red wires for 5v and black wires for ground just to help keep things straight, but of
course it doesn’t matter what color wires you use.

VLAY AT YR R
L o b i

o nniinsyg
Lefs T SR A1) L)
EETNT
e T
VO G

IR
v e

L B R Wt

T e
“\'h\ I \-\l “‘l““““ :
L RO R Ay

Figure 8: Here I've wired the center pin of each pot to an analog input of the Arduino. I've wired the right pot to
analog pin A0 with the green wire, and the left pot to analog pin A1 with the orange wire.

Figure 9: Here I've started wiring the servos by wiring the power and ground connections. I've wired the center
(red) pin of each servo connector to the 5v (RED) bus, and the black pin of each servo connector to the ground
(BLUE) bus on the breadboard.

Figure 10: Here the servo control wires (white in this case) have been wired to digital output pins on the
Arduino. I've wired the top servo to pin 9 using a green wire, and the bottom servo to pin 10 using a white wire.
Note that your servo might have different colored wires. On all servo connectors the center pin is power (4.8-
6v). The ground pin will be the darker of the two other wires, and the control wire will be the lighter of those
wires. For example, on some servos the ground wire is brown and the control wire is yellow.

Figure 11: This shows the completed control circuit for the drawing machine. There are two pots for control,
and two servos for movement.

At this point you can test your circuit using the DrawingMachine program (sketch) in the DM
Examples. Load this program and you should be able to turn the knobs and see the servos move in
response. If your servos are the “continuous rotation” type then you should be able to center the
knobs and get the servos to stop moving. Turning the knob one way will cause the servo to rotate
in one direction, and the other way from center will have it rotate the other direction. The further
you move the knob from the center point, the faster the servos should rotate.

By modifying the DrawingMachine program you can get the servos to react in the way that you
want. For the continuous rotation servos, for example, you might want to limit them to a fairly
narrow range of numbers right around the stopping value (roughly 90) so that they don’t turn too
fast. Slow-ish motion usually makes for a longer-lasting and more reliable drawing machine.

Note that driving two servos directly from the Arduino 5v connection is about as much as the
Arduino can handle. If you need more servos, you will have to use a separate power supply just for
the servos. In this case make sure that you connect the grounds of all the power supplies together.
Hobby servos generally like a power supply of 5-6v.

DrawingMachine Arduino program - Here’s a program you can start with to get your drawing
machine moving. It will take the input from two pots and use the knob postions on those pots to
control the servos.

/

L R N S T R R TR T I R

This programis the control for a two-servo draw ng

machi ne. This machi ne uses two pots (or other resistive sensors)
to control two servos. The two servos nmake the arns of the
drawi ng nmachi ne nove, and thus make draw ngs.

You coul d make this nachine reactive to the environnent by

replacing the pots with other environnmental resistive sensors

such as light sensors, heat sensors, etc. This assunmes that you
install the resistive sensors in a voltage divider arrangenent

with the center tap of the voltage divider feeding the anal og inputs.
You m ght also want to calibrate your sensors and adjust the

range using "map" and "constrain" to get full range of notion

of the servos given the range of environnental data you'll be

seei ng.
/

#i ncl ude <Servo. h> /1 include the Servo library

Servo servol, servoz; /1l create objects for both servos

int servolPin = 10; /1 define where the servos are connected
int servo2Pin = 9; /'l choose any digital pins you like

int potlPin
int pot2Pin

AO; /1l analog pin for first pot/sensor
Al; /1 analog pin for second pot/sensor

i nt potlval, pot2Val; /] variables for pot val ues

voi d setup() {

}

servol. attach(servolPin); // attach the servo objects to digital pins
servo2. attach(servo2Pin);

void loop() {

pot 1Val
pot 2Val

anal ogRead(pot1Pin); // read potl val ue
anal ogRead(pot2Pin); // read pot2 val ue

/1 map the val ues received on the analog inputs fromthe pots

/'l to the servo's range of notion. If you' re using different

/1l anal og sensors, here's where you adjust the map function. You
/1 mght also want to add a constrain function to nake sure you're
/1l keeping the values you' re witing to the servos in the

/1l range of 0-179, or in a narrow range to keep the novenent sl ow.
pot 1Val = map(potlVval, 0, 1023, 0, 179);
pot 2Val = map(pot2Val, 0, 1023, 0, 179);
/1 send the data to the servos

servol. wite(potilVval);

servo2. wite(pot2Vval);

del ay(30); /1 give the servos tine to react. ..

Step2 - Assemble the structure of the drawing machine using foam
core, nuts and bolts, and tape.

Figure 12: This shows the pieces of foam core that you'll use to make your drawing machine. The large top piece
is what I'll use to make the “drive disks” that turn to create the motion. The second large piece is the main
support that will hold the servos. The thinner strips are the arms that I will connect in a pantograph linkage. To
give you some idea of scale, the marks on the cutting board are half-inch squares.

Figure 13: Here I've drawn around the servos with a pencil to mark where I'll cut the holes in which the servos
will be placed. I've also used CDs as a rough guide to drawing circles for the drive disks. Note that the drive disks
don’t have to be perfectly round unless you want them to be. Non-roundness won’t impact their function.

Figure 14: Here I've used an Xacto knife or box cutter to cut holes in the foam core for the servos. Eventually the
servos will be placed in these holes to hold them in place while the machine makes its drawings. I've also cut out
the disks that I'll use as the main drive disks for the drawing machine’s motion.

Figure 15: The first step in the assembly of the drive disks is to poke holes in the disks that will be used to
connect the pantograph arms. I've used a 6-32 bolt and just punched through the foam core. You can also use
something pointy like a pencil or pen. I've also made some spacers out of some foam core scraps that might or
might not be useful later. If the pantograph arms are rubbing on the drive disks it's sometimes useful to offset
the arms from the disks with a spacer like this. It’s not always necessary though.

Figure 16: Now I'm attaching the servo to the drive disk. The servos have a “horn” installed. This is the plastic
piece with four arms that rotates when the servo is told to rotate. I've just used masking tape to connect the
servo horn to the drive disk.

Figure 17: With both disks attached to the servo horns using masking tape, I can put the servos into the square
holes in the base. You might need to use a little more tape to hold the servos snugly in place in the base. This is a
point where you might have an issue if you didn’t plan in advance - it’s important that the drive disks not be so
large that they overlap when you put the servos in the base.

y=m

Figure 18: Here's a side view showing how the servos are mounted in the support plate, and how the disks are
mounted to the servo horns.

Figure 19: Now it’s time to assemble the pantograph arms that will move when the disks move and thereby
move the pen to make the drawing. The first step is to punch holes using the bolt (or something pointy like a pen
or pencil).

Figure 20: These pictures show the nut/bolt elbow joint. I used the bolt (or a pencil or pen) to poke holes in the
foam core, and then use the nut and bolt to make the connection. I also used washers between the pieces of foam
core, and between the foam core and the nut. It’s probably not really necessary to use washers, but it makes the
joint more reliable because the bolt head and the nut don’t dig into the foam core.

Note that these pictures show normal nuts to hold the joints together. That’s probably fine, but you might want
to use lock-nuts instead so that things won’t shake themselves loose over time. Lock nuts come with a nylon
insert that is a little smaller than the bolt diameter. When you screw the bolt and lock-nut together that nylon
insert acts like a friction-fitting to hold the assembly together. It’s much more solid than a regular nut. Just don’t
tighten things too much - you want the joints to move freely.

Figure 21: This picture shows the pantograph joints constructed with lock-nuts and bolts. I've placed the bolt
head facing down so that it if it drags on the paper, it will ride more smoothly when the drawing is made. This
picture also shows the pen being used as the top joint. The following pictures will show how that works.

i
5)84Slc
)

Figure 22: First I'll take the pen apart to get at the thinner pen insert in the center.

Figure 23: I need a flat surface for the foam core to pivot on. I've made a "shelf" using masking tape, and then put
a fender washer (a washer that is a little larger in diameter than a standard washer) on the pen. The foam core
will ride on top of this fender washer.

Figure 24: Here's the pen making a joint in the end of the foam core. Note that I've used fender washers both on
top and bottom of the foam core stack, and held them in place with masking tape “shelves.” Depending on what
pen, pencil, marker, etc. you use, you may have to improvise a different system.

Figure 25: The drawing machine so far - the elbow joints for the pantograph are made with nuts/bolts, and the
top joint is made with the pen. The ends of the pantograph are now connected by some additional nuts/bolts to
the drive disks that are connected to the servo horns. The servo power/control wires are shown coming out of
the base. These will be connected to the electronics that you assembled earlier including the potentiometers
and Arduino.

Step3: Final Assembly of the Harmonograph Drawing Machine

Now that the structure is complete, you can re-connect the servos to your control electronics and
finish your drawing machine.

Figure 26: Here the servos are re-connected to the electronics. The left servo is connected to pin 9 with the
green wire, and the right servo is connected to pin 10 with the white wire. Remember to connect your servos to
5v (RED) and ground (BLUE) on the breadboard. I'm using a 9v power supply connected to the Arduino’s 2.1mm
power input instead of the USB cord power. This will give the 5v signal on the Arduino board a little more
oomph because it uses the on-board voltage regulator to supply the 5v power instead of the USB connection.

Note that driving these servos is about all you can drive directly from your Arduino, even with the external
power supply. If you are driving more servos than this, you will need to use a separate power supply for the
servos, and a separate power supply for the Arduino. If you do this, make sure to connect the grounds of the two
power supplies together! Hobby servos generally like a voltage between 5v and 6v.

Figure 27: Here’s the finished harmonograph Drawing Machine. You can make drawings by turning the knobs on
the potentiometers. You might have to add weight to the pen to make nice dark lines. Large washers make great
weights - you can just place them over the pen’s joint as you can see if you look closely to this picture.

There are many ways you can customize your drawing machine. One would be to use different
sensors other than pots. For example, if you replaced the pots with some environmental sensor
such as a light sensor, your machine would draw based on environmental conditions instead of
direct control by a person. You could also write a program to directly control the servos using a
drawing algorithm, or random function, or both. There are also many different mechanical
linkages you might consider other than this simple four-arm linkage. There are a huge number of
possibilities!

This drawing machine is a simple project, but one that demonstrates a large number of physical
computing concepts. These are just a few of those concepts:

The project demonstrates the control of physical movement by a program. The program
sends signals to the servos using pulse width modulation to tell the servos what angular
position they should assume or how fast to rotate. The Arduino Servo.h library handles the
details, but the basic concept is that by driving signals to a digital output pin your program
can cause things to move physically.

The pots are a good example of external sensors providing information to a program.
Programs need inputs to provide data to be processed. In this case the inputs are real-time
environmental inputs that are sampled by the program.

The environmental condition being sensed here is the position of the knob, but this
extends naturally to a wide range of environmental sensors, especially so-called “resistive
sensors.” These are sensors that change their resistance in response to environmental
conditions such as light, heat, movement, distance, etc.

This project involves simple electronics concepts such as power and ground being
required for electronic and electromechanical components. As a side note it can bring up
topics such as power and current limits, and using multiple power supplies.

The controller introduces the “solderless breadboard” as a prototyping substrate for
electronics. These breadboards are commonly used to quickly assemble electronics for
testing or debugging. By poking wires in the breadboards, electrical connections can be
made and modified quickly and easily.

The control program running on the Arduino demonstrates a “reactive programming”
approach to algorithm design. The “loop” program in the Arduino programming
environment (previous page) is an endless loop. Each time through the loop the
environmental sensors (pots) are sampled to get their new values. Those values are
interpolated (mapped) to the desired range, and then used to control the position of the
servos. Each time through the loop, the control program reacts to the environmental
conditions by causing some activity in the outputs.

This project also demonstrates the strong connection that can exist between technology
and the arts. This drawing machine will not make masterpieces, but it does demonstrate
the basic concepts of how physical computing can be used to create Kinetic sculptures.
Imagine a more complex drawing machine, or a room full of simple drawing machines
reacting to environmental conditions. That could be a really compelling art piece. This can
help CS students see a very different application domain for computing, and can also help
art students understand the possibilities of computer control in their art practice.

Appendix A: Harmonograph Drawing Machine Gallery

Here are some examples of harmonograph-style drawing machines that students have made in

previous workshops just to give you some ideas. Also included are some of the drawings made by
these machines.

Appendix B: CdS Light Sensors

Light sensors are variable resistors that change their resistance based on how much light is falling
on their surface. They are made using Cadmium Sulfide as a photoreactive material. These sensors
often have a flat-topped look with a squiggly line in the surface of the sensor. That squiggly line is
the CdS light sensitive material. It is this material that changes its resistance when light on it. It has
a very high resistance in the dark, and has a much lower resistance when light is shining on it.
Typical values might be 200k in the dark and 10k in bright light, but these cells vary tremendously
so it's a good idea to test them using a resistance meter or a calibration program. Some CdS light
sensors in various sizes are shown in Figure 28.

Figure 28: Some CdS light sensors in various sizes. It’s difficult to determine the exact range of resistances these
sensors will take on. You'll need to measure them with an ohmmeter or by using a calibration program.

These sensors can take the place of the variable resistor in Figure 4. The difference is that it’s
possible that the light sensor will have very low resistance when a bright light is shining on it, so
you should always use an additional resistor to make sure that you have at least some minimum
value of resistance from power to ground. You can use them in either configuration as seen in
Figure 29. Connect the OUT signal from the voltage divider to one of the analog inputs of the
Arduino and read the value using analogRead(pin).

Figure 29: CdS light sensors used in a voltage divider with a current-limiting resistor. The value of the fixed
resistor should be sized so that if the CdS sensor’s resistance gets close to 0, the current from VDD to GND is
limited to a safe, low value. In practice a 10k resistor is a good place to start.

Because the CdS cell has high resistance in the dark and lower resistance in the light, the OUT
value for the left hand circuit in Figure 26 will be low in the dark and high in the light. The right
hand circuit will be opposite: OUT will be high in the dark and lower in the light.

It's a good idea to run a calibration program to see what range of values you will see in the
environment in which you’re installing the sensors. This is basically a program that just prints out
the values received by the sensors so that you can take note of the range of high and low values
that you're likely to see. You can then use this knowledge in your control program to get the range
of motion that you want in your drawing machine.

Here’s an example of a very simple calibration program.

/*
* This program denonstrates how to calibrate a resistive sensor by

printing the values you get back fromthe sensor to the serial

moni tor. You can eyeball the values and get a good feel for the
range of val ues you can expect fromthe sensor.

*/

int sensorPin = AO; /1 select the input pin for the sensor

i nt sensorVal ue = 0; /1l variable to store value conmng fromthe sensor
voi d setup() {

Seri al . begi n(9600) ; /[l Init serial comrunication at 9600 baud

}

void loop() {
sensor Val ue = anal ogRead(sensorPin); // read the value fromthe sensor:

Serial.print("Sensor value is: "); /[l print a nmessage
Serial . println(sensorVal ue); /[l print the value you got
del ay(50); /[l wait so you don’t print too nuch!

/1l VERY useful for getting a feel for the range of values conmng in
/'l Remenber to open the Serial Mnitor to see the val ues

Once you have a good idea of the range of values you're likely to receive, you can use the “map”
and “constrain” functions to set the values that you're sending to the drawing machine servos. For
example, might be seeing values from 200 to 750 from your light sensors. In response to those

values, you might want your servos to choose to change rotation directions and speed up or slow
down. So, you might want your servos to be roughly still for the center of that range, and then
move clockwise if the numbers get higher and counter-clockwise if the numbers get smaller, but
never to go very fast, so to stay within a range of, say, 75 to 105, where 90 is roughly the center
where the rotation is zero. Then you might use the following code snippet:

void loop() {
sensor 1Val
sensor 2Val

anal ogRead(sensor1Pin); // read sensorl val ue
anal ogRead(sensor2Pin); // read sensor2 val ue

/1 map the incom ng values fromthe sensors

/1 (range from 200 to 750 in this installation environnent)
/1 to the desired output range (75 to 105).

sensor1Val = map(sensorlVval, 200, 750, 75, 105);

sensor 2Val = map(sensor2Vval, 200, 750, 75, 105);

/1 Make sure the servos never spin too fast in either direction
sensor 1Val constrai n(sensor1Val, 75, 105);
sensor 2Val constrai n(sensor1Val, 75, 105);

/1l send the data to the servos
servol. wite(sensorlVval);
servo2. wite(sensor2Vval);

del ay(30); /1 give the servos tine to react...

}

Using this setup, you could have your drawing machine making changes on the speed and direction
of the two drive servos based on the changes in the ambient light in the gallery environment. You
could use any other resistive sensors that you can find in pretty much the same way.

Appendix C: Deterministic control of your Drawing Machine

Of course, you could have your control program make changes to the direction and speed of your
control servos directly under program control rather than have the sensors provide input. In this
case you simply design your program to control the servos directly. The “continuous rotation”
servos that we’re using take values from 0 to 179, and are roughly stationary in the center of that
range (~90) and rotate in different directions on either side of that center value. The further your
values are from the center, the faster the rotation.

You could write a program that would, for example, keep one servo at a constant speed and sweep
the value of the other servo over some range at some rate. The program you write would clearly
need to have some notion of real time to know when to change the speed of the servo that is
changing. One way to keep track of time in an Arduino program is using the “millis()” function.
This returns the number of milliseconds since the program has started running. You can use this
function, for example, to see if it's time to modify the servo’s speed and direction. Here’s a tiny
example:

#i ncl ude <Servo. h> /1 include the Servo library

Servo servol, servoz; /1l create objects for both servos

int servolPin = 10; /1 define where the servos are connected

int servo2Pin = 9; /'l choose any digital pins you |ike

int servoState = 90; /1l store the current state of the changing servo
int servolncr = 1; /1 servo increnent

long prevMIlis = 0; [/l store the last time the servo was updated

/1l the follow variable is a |long because the tinme, nmeasured in mlliseconds,
/1 will quickly become a bigger nunber than can be stored in an int.
long interval = 10000; // interval at which to update (10 sec)

voi d setup() {
servol. attach(servolPin); // attach the servo objects to digital pins
servo2. attach(servo2Pin);

}

void loop() {
servol.wite(80); // This servo will always go the same speed and direction

/1l check to see if it's time to change the val ue of the sweeping servo;
/1l that is, if the difference between the current tine and last time you
/'l changed is bigger than the interval at which you want to change.
unsigned long currentMllis = nillis(); //get the current “time”

if(currentMIlis - prevMIlis > interval) { // If bigger than interval

prevMIlis = currentMI|lis; /1l save the last tinme val ue changed
if ((servoState > 110) || (servostate < 75)) // if the servo hits a linmt
servolncr = -servolncr; /1 change direction

servoState += servolncr; // nmodify the servo state by increnenting
} /1 end “if bigger than interval”

servo2. wite(servoState); // Wite the new state to the sweeping servo
del ay(30); /1 give both servos time to react...

Appendix D: Sources for Supplies

This is a definitely non-exhaustive list of some of the equipment mentioned in this course, a rough
guide to prices, and some example suppliers.

Arduino: The main site for the Arduino is www.arduino.cc. This is the official site for all open-
source Arduino information, and for software downloads. A great secondary source for Arduino is
www.freeduino.org which is a non-official community-supported site.

Arduino comes in many hardware variations. The current generic Arduino is the Arduino Uno. It
retails for around $30. Some suppliers include:

e Sparkfun: www.sparkfun.com

¢ Radio Shack: www.radioshack.com
¢ Adafruit: www.adafruit.com

e Hacktronics: www.hacktronics.com

These are also great sources for all sorts of things related to embedded systems, physical
computing, making, and hardware hacking.

Switches and sensors: The previously mentioned sources also have loads of switches and sensors
of all sorts. Many of the sensors that we didn’t discuss in this workshop are also resistive sensors
and can be used in exactly the same way as we used pots and light sensors.

Other sources for small electronic parts like this include:

* Jameco: www.jameco.com
* Digikey: www.digikey.com
* Mouser: www.mouser.com

Of these suppliers, Jameco is more for the hobbyist, and Digikey and Mouser are more for the
professional. They all sometimes have great prices, especially in quantity, but you sometimes
really have to know what you’re looking for. As an example an individual light sensor at Sparkfun
or Jameco runs between $1.25 and $2.00. But, with a little more searching, Jameco has a bag of 50
assorted light sensors for $15. Look also for Jameco’s bags of assorted switches, assorted LEDs, etc.
They can be a great way to quickly stock a set of Kits.

Servos: These are the type of servos used in radio controlled model airplanes and model cars, and
for small robotics projects. So, any hobby shop will have them. Radio Shack, Sparkfun, etc. also
carry them, but you might find a better deal at a hobby shop or a robotics hobbyist shop. Some
examples:

¢ Hobby Partz: www.hobbypartz.com

* Servo City: www.servocity.com

e Trossen Robotics: www.trossenrobotics.com
¢ Pololu: www.pololu.com

Electronics surplus resellers: Sometimes you can find great deals on surplus parts at a surplus
reseller. Here you really do need to know exactly what you're getting, and be willing to take some
chances, but you can find some real bargains if you look around.

Some examples:

* Electronics Goldmine: www.goldmine-elec.com

e Marlin P. Jones: www.mpja.com/

e Alltronics: www.alltronics.com/

* Electronics Surplus: www.electronicsurplus.com/

Lady Ada (Limor Fried) at Adafruit also has some great suggestions at:
www.ladyada.net/library/procure/hobbyist.html

