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Figure 1: Model of patient heart viewed through HoloLens in procedure room.

ABSTRACT

During a vascular intervention (a type of minimally invasive surgi-
cal procedure), physicians maneuver catheters and wires through a
patient’s blood vessels to reach a desired location in the body. Since
the relevant anatomy is typically not directly visible in these pro-
cedures, virtual reality and augmented reality systems have been
developed to assist in 3D navigation. Because both of a physician’s
hands may already be occupied, we developed an augmented reality
system supporting hands-free interaction techniques that use voice
and head tracking to enable the physician to interact with 3D virtual
content on a head-worn display while leaving both hands avail-
able intraoperatively. We demonstrate how a virtual 3D anatomical
model can be rotated and scaled using small head rotations through
first-order (rate) control, and can be rigidly coupled to the head for
combined translation and rotation through zero-order control. This
enables easy manipulation of a model while it stays close to the
center of the physician’s field of view.
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1 INTRODUCTION

When performing vascular interventions, physicians frequently
need both hands for intraoperative tasks. However, augmented
reality (AR) and virtual reality (VR) systems for surgical procedures
often rely on hand-based or foot-pedal input, sometimes comple-
mented by head tracking, to enable targeting and selection (e.g.,
[Hasan and Yu 2017; Jalaliniya et al. 2013; LaValle et al. 2014; Mewes
et al. 2017]).

To address the need for hands-free visualization control, without
involving the physician’s feet, we present the head-tracking and
voice-based 3D user interface to an AR guidance system for vascular
interventions that uses Microsoft HoloLens to present 3D models
of patient anatomy (Figure 1) [Grinshpoon et al. 2018; Loeb et al.
2018]. Since current AR head-worn displays (HWDs) have a limited
field of view (FOV), physicians can potentially lose sight of virtual
content during manipulation. To avoid this, we use first-order (rate)
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Figure 2: Rotating a model. (a) User selects transformation mode while looking at model. (b) In rotation mode, model rotates
in same direction as head (to right, as shown here). (c) The farther away head is oriented from model center, the faster trans-
formation is applied. Only small changes in head orientation are required to control transformation, as shown in top row.

control of model rotation and scaling in response to small head
rotations (Figure 2), keeping content near the center of the FOV.

Image-based facial motion and orientation tracking of physicians
has been used to control position and orientation of surgical instru-
ments such as laparascopes [Nishikawa et al. 2003] and endoscopic
cameras [Reilink et al. 2010; Wachs et al. 2010], intraoperatively
using 3DOF zero- and first-order control. However, this may intro-
duce restrictions on a physician’s head position and orientation or
require physical input through methods such as foot pedals [Reilink
et al. 2010] in order to function properly. Because we use a self-
contained, 6DOF-tracked HWD and voice-command control, we
avoid these restrictions and enable a physician to move their head
and body freely throughout a procedure.

2 USER INTERFACE

The user selects a virtual model by positioning and orienting their
head such that a cursor aligned with the forward-facing direction
of their head intersects with that model. The user then issues a
voice command to select a mode, indicated by the cursor icon.
Head translation and rotation control transformation of the
model. For rotation (Figure 2) and scaling, the user must look away
from the model’s center window (a predefined distance from the
model center) to apply the transformation, using first-order (rate)
control. The user can pause the transformation by looking back
towards the center window beyond a predefined cursor window or
saying “stop” to exit the transformation completely.
Transformation rate is determined by the magnitude of the vector
7 between the model center and the intersection g of the gaze
direction with a plane P that passes through the model center
and faces the user (with the up vector determined by the camera).
Rotation is counterclockwise about an axis obtained by rotating 7
counterclockwise 90° in P. For scaling, size is increased (decreased)
when g is above/right of (below/left of) the line u = —v, where u
and v are coordinates in P. To perform combined translation and
rotation, the virtual model is rigidly coupled to the translation and
orientation of the user’s head, accomplishing zero-order control.

3 CONCLUSIONS AND FUTURE WORK

We have described a hands-free user interface for manipulating
virtual 3D content in AR, designed for intraoperative use with input
based on voice and head tracking. We are currently running a user
study to determine the effectiveness of our techniques.
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