
Custom Software Development in Post Production

Andrew Chapman
Framestore CFC

Jack Brooks
Walt Disney Feature

Animation

David Hart
PDI/Dreamworks

Daniel Maskit
Digital Domain

Steve Sullivan
ILM

1 Panel Topic – Andrew Chapman

Most post - production and digital effects work these
days employs custom software to varying degrees.
This software may be a necessity for the high- end
work, and it mostly gets the job done, but from the
perspective of the artists and other users, it is often
poorly written, hard to use, and causes delays and
frustra tion near deadlines when it can be least
afforded.

This panel consists of software developers and artists
who have experience in creating and /o r using such
software and will discuss in broad terms what is
wrong with it, why it is this way, and how it can be
improved.

There seems to be a willingness to accept unreliable
and poorly written software in our field because the
average technical ability of the end users is generally
much higher than in other industries. While it is true
that many users are able to work around the problems
they find with the software, it is still costing us greatly
in wasted time and effort. It also contributes to the
overall feeling that CG produc tion is harder and more
frustra ting than it need be, resulting in longer hours
and a less pleasurable experience for everyone.

Our indust ry is maturing, with a larger and more
consis tent pool of work. However, software
development is still generally done in a fairly
amateurish fashion. It is not enough that a piece of
software works on one particular project. It needs to
then be available as an easily accessible tool for doing
similar jobs in the future. We need to provide a more
sustainable foundation of tools, rather than simply
starting from scratch with each new project.

Open Source software is an interesting avenue for
improvement, as the nature of development in our
field makes this model particularly suitable. Tools can
be quickly written to get the immediate job done and
then passed out to the Open Source community for
the robustness and usability features they are often
lacking. By the time they are needed again by the
originating company, they may have improved greatly
with no effort or expense on their part.

Making custom software Open Source also helps to
alleviate the problems of using proprietary tools when
a large proportion of the users are highly migratory.
Users are often unwilling to dedicate themselves to
learning or helping to improve custom software when
they know they might soon be working elsewhere and
those tools will be unavailable to them.

However, if the tools were made Open Source then
people will be encouraged to contribute, as they are
using and building on something they can use again in
the future, and the skills and experience with those
tools will be appreciated outside their current
employer.

2 Position Statement – Jack Brooks

As, Director, Technology at Walt Disney Feature
Animation, I have one of the larger custom
development groups in the business. We deploy a
wide range of 3rd Party, completely custom, and
extensions to 3rd party software products. In the six
years I have run the software development team here,
I have struggled extensively with the issues and
concerns expressed in this panel problem statement.
We have evolved from a studio with almost all of the
core software being custom, to a place where we have
a broad framework the suppor t s a wide range of
internal and 3rd party components. I strongly believe
that custom development has a critical role for high-
end production, but it must always be looked at as
cost value trade off.

The answer to the question of custom development or
not is also largely driven by the size of the
studio / p ro ject. The smaller the project or studio less
sense it makes to write a custom solution, and vice
versa. This is driven by the fact that ultimately the
decision is about cost. Any look can be created, in the
most extreme case, painted frame by frame, with
existing software. The question is, will it more
economical to write a solution than to brute force the
solution. The larger the project, the more likely it is
that the production savings will exceed the
development costs (even small savings add up across
1000 shots).

Many of the issues described in the problem
statement can be traced to how projects are managed.
The most critical change we made to address this was
insuring that key production users took a very active
role in the development. We also had to change how
we measured the products success. Custom
development is typically attacking problems that we
have not solved before. Thus a traditional
requirements phase is not fruitful as most of the time
is spent on the wrong items. Instead we focus on
some high- level objectives and target dates and then
measure the progress by evaluating whether we are
getting more value from the project than we are
investing. Success is not determined by whether we

met the original (often flawed) goals or created a
robust software product. Both are good things if they
happened, but, we are not in the software
development business so the only measure is whether
this development enabled us to do more for less.

While our process may appear amateurish to
developers in other industries I think that there is the
right amount of structure for our environment.
Related to this is the perception that the first time we
create a produc t it should be the ultimate solution. I
feel strongly that this is not a reasonable burden to
place when developing something new. We consider
the initial development of a tool to be a throw away
after the first produc tion use. This does not always
end up being the case, but it frees the team to move
quickly and meet the immediate demands. Then based
on the results, we decide if we want to continue to use
the tool, what it should really do, and how much it is
worth investing to make it robust and general. These
are not judgments that can be accurately made until it
has been through it's first production.

Using an Open Source paradigm in our industry is
interesting and something I would love to give more
effort to, but I fear that studio pipelines vary enough
that the type of community development that occurs
on something like Perl is not generally likely.

3 Position Statement – David Hart

There are good reasons quick, sloppy software is
written in production without the overhead of formal
software methods or lots of documenta tion and
testing. Tight production schedules, complex
dependencies and quickly changing staffing are
constantly at odds with proper software engineering
principles. Often the mistake we really make is not
writing software poorly, but expecting software that
was by necessity written very quickly to automatically
generalize and apply to situations other than what it
was developed for. In addition produc tion planning
often underes timates the time needed for 'in
produc tion development ' and instead assumes that
the custom software used for a few shots will work
for many more with little or no changes.

At PDI/Dreamworks, the key factor determining
whether a piece of software will be high quality and
general enough for widespread use is whether or not
it falls within the production budget. We use two
different development methodologies depending on
whether the software is intended for long or short
term use. Long term software is developed and
funded outside the production. It is written using
formal software engineering methods, including
documenta tion, testing and review. Short term
software is developed within the production, subject
to the produc tion 's scheduling and staffing
requirement s, funded directly by the produc tion
budget, and few coding standards apply. Having the

option to choose between short and long term
development modes for any particular task is
wonderfully flexible. Unfortuna tely most CG studios,
expecially smaller ones, operate wholly in this short
term model out of necessity.

The kind of software engineering we learn about as CS
majors is heavy and makes the assumption that the
code needs to be maximally general and reusable. It
also assumes that the code is the product, reinforcing
the need for reusability. Our case is different, the film
is the product, not the code, and the dirty tricks we
use to get the film done won't break the film once it's
released. Because of this and because hectic
production schedules aren't going away, I think we're
stuck with the short term software model for the
foreseeable future. We should embrace its flexibility
and work to make it better. There are specific things
we can do to vastly improve the short term coding
model. In terms of software engineering for CG
production we need to improve, or perhaps establish,
lightweight formal methods.

Open Source is indeed an interesting avenue for
development, one that should be explored, and there
are even some very good projects in the works out
there. Open Source may address some of these
problems but if CG studios want to go this route, it
also brings a host of new issues to the table:
ownership and intellectual property rights, how to
manage software changes, release schedules and
feature conflicts for different productions, just to
name a few.

The onus is on CG developers as a community to
make these solutions a reality. Studios are not
motivated to invest time or money unless they see
direct benefits for their productions, nor should they
be expected to. Its our responsibility to figure out
how (or whether) to reuse code that was written at a
fast and furious pace without documenta tion, and
how to write code quickly that people will want to
reuse. It is our responsibility to participate in
developing Open Source tools and use them to solve
problems at home and work and help the studios we
work for to see the direct benefits of these efforts.

4 Position Statement – Daniel Maskit

At Digital Domain, we are in the business of
producing visual effects, not software. Obviously we
are happy to commercialize our more successful
software projects if there is a possibility to do so, but
only if doing so will not compromise the competitive
advantage we feel we gain through our in- house
development. Whenever we identify a new software
need for production, we start out by determining
whether or not it makes sense to develop something
ourselves. In general our options are to buy
something from someone else, find some free
software that meets our needs (this is quite rare),

develop a quick and dirty tool to get through a show,
solve the problem with plugins, or develop a solid,
general piece of software.

Given the resource constraints that we operate with,
this last option is only taken for tools which will be
used by many produc tions, can contribute to our
competitive advantage, and can be developed within a
produc tion 's time constraint s. As much as we would
like to just implement all of the cool ideas that we
come up with in software, our process is driven by
production. We generally only develop new software if
we think it is providing us with a competitive
advantage. In general this precludes our releasing
software as Open Source, although we have created
some widely used Open Source packages, with the
best example being FLTK. We are more likely to take a
smaller role in Open Source, but do try to contribute
back to the community when we have modified
existing packages.

For us software development is always a balancing
act. On the one hand we have people who are capable
of producing extremely high quality software, from an
engineering viewpoint. On the other hand we have
some of the most demanding users on the planet. In
between those extremes we have a wide range of skills
and requirements. Developing processes to allow each
of these groups to find appropriate compromises to
make is an art in itself. When we ask our users to be
more sophisticated, we are generally giving them
something in return. Usually this is a faster delivery
time, but sometimes it is better integration into
existing production pipelines.

And I think that the mention of this integration gets
to the crux of the problem for us. No piece of
software is terribly useful if it can't be fit into our
workflow. When we develop code ourselves we can
ensure that it plays well with our pipeline. When we
use other people's software, we generally end up
having to write our own code around it to make it fit
in anyway.

As for the quality of software, I think that we do
better than people might realize. You would think that
our tools would benefit from a formal quality control
process, and the use of professional testers, but it is
unclear that our software is significantly worse than
many of the third - party packages produced by
professional organizations. And we have the added
advantage that we can roll out bug fixes without going
through a lengthy formal release process.

Ultimately what our clients care about is not whether
we have easy to use software, but whether we are able
to give them something that has never been done
before. And our artists know that when the tools don't
work the way they think they should, we are happy to
make changes to the code.

5 Position Statement – Steve Sullivan

I'll be giving the perspective of developing studio
tools and infrastructure at ILM, where we co- mingle
proprietary and vendor tools freely. Someone
speaking on per - show or per - shot development
might have very different answers.

• Custom production software is essential to cutting
edge effects. Vendor tools alone will generally not
get you state - of- the- art.

• Custom produc tion software is essential to
competitive edge. Many artists rotate among
studios per project, and artist experience isn't the
distinguishing factor it once was. Better / fas te r
tools / techniques / inf ra s t ruc ture is one clear way to
differentiate.

• Software developers must recognize the project -
driven nature of the industry, that wonky
interfaces pose a real cost in training and
productivity. In the big picture, utility trumps cool,
so stick to standards unless absolutely necessary
to suppor t the next great thing.

• Post - production is a complicated process with
many inputs, stages, and outputs. It seldom pays
to polish any particular tool to perfection, since
after, say, 20% improvement, the bottleneck has
moved on. Often better to make smaller advances
distributed across artist workflow.

• Quick turnaroun d times for custom software can
be a lifesaver in production (and likewise, poorly-
designed or tested code can be deadly)

• The vendor market is tough, and complete reliance
on vendors is risky. In some areas, we could buy
solutions a few years ago that we can no longer
buy today.

• At larger shops like ILM, long- term design and
serious software engineering is essential. A small
number of developers hand their systems off to a
large number of artists working on many shows in
parallel. We cannot afford developers writing
hacky per - shot solutions to be used primarily by
the developers themselves.

• Open Source is not a viable solution for most tools
(see the long- term design and software
engineering point above). Effects studios are driven
by their projects and specific needs, and Open
Source progress / q u ality doesn' t often align with
them. Everyone wants to do the quick / s mall thing
needed for their show, no one wants to do the hard
architectural slogging. (e.g. FilmGimp)

• Open Source can work well as a mechanism for
fostering standards (e.g. OpenEXR)

