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1 Introduction

This exhibition explores the idea of using technology to understand
the movement of people. Not just on a small stage, but in an expan-
sive environment. Not the fine details of movement of individuals,
but the gross patterns of a population. Not the identifying biomet-
rics, but patterns of group behavior that evolve from the structure of
the environment and the points of interest embedded in that struc-
ture. In this instance: a marketplace, and in particular, the mar-
ketplace of ideas called SIGGRAPH 2007 Emerging Technologies
(ETECH).

In this exhibit we combine sensor hardware, analytic tools, and vi-
sualization technology into a system to answer some of the most
basic questions about a trade show venue like ETECH: where are
the people right now? which exhibits always have a crowd? when is
the venue most crowded? and how do other events such as keynotes
affect venue traffic? We cannot say that we truly understand the
value of the venue, if we cannot even answer these basic questions
about how the participants utilize the space.

The first step in understanding a thing is observing it. At the Mit-
subishi Electric Research Laboratories (MERL) we have developed
a sensor network research platform specifically tuned to observing
the activities of people in a built environment. A sensor node, with-
out it’s enclosure, is pictured in Figure 1. The nodes are in some
ways descended from the work at M.I.T/ [Munguia Tapia et al.
2006] but they include a number of improvements such as power
efficient design for multi-year battery life, a standards-based MAC
for communications reliability, and a design more suitable to large-
scale manufacturing to support this kind of large-scale project.

This exhibit builds on the pioneering work in sensor networks in
general such as Estrin [Estrin et al. 1999] and the Berkeley Motes
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Figure 1: The wireless, low-power sensor used in the system.

team [Hill et al. 2000]. We choose a dense network of simple sen-
sors over a sparse collection of cameras [Rahimi et al. 2004] for the
several reasons: cost, robustness, and privacy. The network is much
more cost effective. Of course the sensors themselves are very in-
expensive, but also the simplicity of the data stream generated by
the sensor leads to lower computational overhead and lower com-
munication overhead. Those both imply lower power consumption.
The nodes pictured in Figure 1 draw an average of200µW . This
means that the sensors can be wireless and run off battery or para-
sitic power sources. This means that installation can be extremely
simple and fast, drastically lowering the overall cost of the sys-
tem. Several groups have explored the benefits of networks of mo-
tion sensors for monitoring human behavior, primarily in residen-
tial settings [Aipperspach et al. 2006; Wilson and Atkeson 2005;
Munguia Tapia et al. 2006; Abowd et al. 2002].

A network of simple sensors is more robust in the sense that sin-
gle node failures do not have as significant an impact on the data
stream as it would in the case of high-value nodes. Since the al-
gorithms and hardware of each node are significantly simpler than
what would be required in a smart camera, with integrated computer
vision, possibly compression, and high-bandwidth communication,
they can be engineered to a higher level of robustness to environ-
mental, situational, and algorithmic failures.

The sensor modality itself in inherently privacy-friendly in the
sense that it records far less information than a camera: only about
one bit per square meter per second. Not enough to identify indi-
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Figure 2: An example of high-population movement during an evacuation.

viduals, certainly, or even enough to detect any but the most overt
behaviors or moving about the environment With a camera-based
system the system must be carefully constructed to scrub privacy-
invading information from the collected data, and the observed can
only trust that the system designers and operators have done that
jobs. With motion sensors the information is never sensed, and so
there is no need for the observed to trust the designer or operator at
all[Reynolds and Wren 2006]

All that remains is to prove that the networks can be useful as well
as affordable, robust, and sensitive to human needs.

2 Sensation on the Network

Figure 2 shows the response of a network of motion detectors to a
flood of evacuation activity during a false fire alarm at our research
facility in Cambridge. The map shows the geographic distribution
of 155 sensors covering the hallways, lobbies, and public meet-
ing places on one floor of the office building.where we work. The
brighter the sensor the more recently it was activated, with black
sensors not having been activated within approximately the last 10
seconds.

Despite having about 100 inhabitants (significantly more in the
summer), this system typically only observe a handful of people
moving around the space at any given time. Certain events, such
as the fire evacuation in Figure 2 are the exception: some trigger
causing the synchronous movement of a great many people, driv-
ing the network toward saturation. However, it is still possible to
see significant structure in the data. For example, there are many
people traveling from the seminar room in the upper left of the map
to an emergency exit near the center of the building. Even in this

Figure 3: The timeline view of the evacuation, showing both gross
and fine behavior features.

visualization the signature of this massive flow of people is notice-
ably different from the movements of single individuals and small
groups evident in the rest of the space at that time. It’s amusing
to note that the path chosen by the throng was in fact erroneous:
there is a different exit that is much closer to the seminar room that
should have been used instead.

A different way to view the data is pictured in Figure 3: a time-
line or piano-roll[Horton 1855] mode that reveals temporal pat-
terns not apparent from the spatial view. The time axis is along
the horizontal, and the sensors are stacked up on the vertical axis.
It is easy to see several distinct states of the building: normal ac-
tivity, heightened activity during evacuation, and the empty post-
evacuation state. At a larger time-scale in Figure 4, we see an entire
week of data. Gross patterns become apparent at this scale: more
activity during the day compared to at night, and more activity on
the weekdays compared to weekends. It is even apparent that activ-
ity begins and ends at different times of day in different parts of the
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Figure 4: Another view showing a whole week, with gross daily
and weekly behavioral patterns in evidence.

space.

3 Perception on the Network

Visualizing raw sensor data can be very powerful, as it can provide
immediate insight into complex patterns of behavior. Often these
patterns are invisible to the participants. It is difficult to get the
Gestalt of these patterns while one is down in the them, moving
around with the rest of the ants, to use an apt, if unkind metaphor.
We have developed a toolbox of analytic techniques that work well
on these kinds of data streams. The analytic techniques allow us
to extract the more subtle patterns and expose them in concisely
focused visualizations.

Figure 5 shows the power of such analysis. The system uses statis-
tical models of activity to extract form from the mass of raw activa-
tions. The top plot shows the spatial distribution of motion energy
in the space: the parts of the space that see the most motion acti-
vations are colored in dark. The bottom plot tells a very different
story by extracting only the activities that appear to be related to
meetings. This washes away all the activations that have to do with
walking, or loitering, or any of the other varied‘ activities in the
space. Given this analysis, it is possible to visualize a use pattern
that is invisible from the raw activations alone.

4 Interacting with the Network

We expect these basic visualization and analytic tools to carry di-
rectly into the ETECH venue. Figure 6 shows a touch-table inter-
face powered by the DiamondTouch technology [Dietz and Leigh
2001]. This interface is optimized for surveillance tasks [Ivanov
and Wren 2006] in office or warehouse environments where there
are relatively few people moving around in an uncoordinated fash-
ion.

The phrase “a few uncoordinated people” does not describe the
ETECH venue particularly well. The methods presented above will
need to be adjusted to deal well with the throngs of individuals loi-
tering and browsing their way through ETECH. We have gathered
data at a university research open house that we will use to further
tune our algorithms for new behaviors and denser populations.

ETECHis also more like a marketplace of ideas [Miller 2000]. The
things people want to learn from the system are also very differ-
ent. The participants will be asking questions of a more social na-
ture [Kaur 2007]. A rushed participant might want a list of the most
popular exhibits. Someone with more time might want to know
where the crowds are right now, so that they can avoid those places
and see the exhibits in more depth. Someone who wants to come
back later might want to know, based on yesterday’s data, what time
the exhibits are least congested. Conversely a photographer might
want to know the best time to find that perfect crowd for an exciting
photo.

Raw Motion Energy

meeting (maxNorm)

Figure 5:Top: The spatial distribution of raw motion energy com-
pared to theBottom: spatial distribution ofmeetingactivity detec-
tions

The exhibit will present a transformed interface that is more visu-
ally attractive and compellingly interactive. It will allow visitors to
navigating the ebbs and flows of the ETECHvenue over the course
of the week. We also plan to allow people to query the abstracts
of various exhibits to so that they can use this information in con-
text, with the throng and popularity visualizations to plan their visits
more effectively.
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Figure 6: A data-exploration tool running on the DiamondTouch.
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