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Abstract

This course will focus on techniques, algorithms, data-structures, and databases for dis-
playing very large geometric databases interactively (greater than one million polygons
drawn at least ten frames per second). Beginning with a discussion of basic tech-
nigues and leading to state-of-the-art algorithms, the speakers will address key issues
in walkthrough, including visibility computations, automatic object simplification, and
memory management through database subset pre-fetching. Speakers will show real
applications of these algorithms to a variety of areas, including visual simulation, virtual
reality, architecture, and digital mockup.

Attendees of this course will better understand the key issues in dealing with very
large geometric databases. They will be provided basic and state-of-the-art techniques
to overcome hardware and software limitations that preclude the high frames rates
necessary for interactive inspection of complex geometric scenes. These techniques will
be illustrated by real examples of working walkthrough applications using databases
with between 1 million and 500 million polygons.

A working knowledge of interactive computer graphics, including the mechanisms
of matrix transformation, perspective, and raster graphics, will form a good foundation
for the course material.



Course Schedule

A. Introduction - 10 minutes
Statement of the problem. Introduction of the speakers. Agenda. - Eric Brechner

B. Graphics Techniques for Walkthrough Applications - 75 minutes

An introduction to techniques common to most walkthrough applications with ex-
amples from the IRIS Performer toolkit. The methods include multi-tasking, view
frustum culling, occlusion culling, level-of-detail, frame rate control, database
paging, dynamic primitive tesselation, and texture replacement. - Brian Cabral

e Morning Break

C. Hierarchical Visibility and Tiling - 75 minutes
Hierarchical approaches to accelerating visibility computations in extremely com-
plex scenes. - Ned Greene
e Lunch

D. Geometric Simplification - 75 minutes

The generation and exploitation of multi-resolution graphic models for the in-
teractive visualization of complex mechanical or architectural 3D scenes. -
Jarek Rossignac

o Afternoon Break

E. Database Management - 75 minutes
Algorithms for computing and pre-fetching a small subset of a disk-resident data-
base to store in memory during an interactive walkthrough. - Thomas Funkhouser
e Seventh-inning Stretch

F. Wrap-up and Future Directions - 20 minutes

Hierarchical level of detail, culling, and data staging for interactive walkthrough
of infinite databases. - Eric Brechner
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