“Physics-inspired topology changes for thin fluid features” by Wojtan, Thürey, Gross and Turk

  • ©Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk




    Physics-inspired topology changes for thin fluid features



    We propose a mesh-based surface tracking method for fluid animation that both preserves fine surface details and robustly adjusts the topology of the surface in the presence of arbitrarily thin features like sheets and strands. We replace traditional re-sampling methods with a convex hull method for connecting surface features during topological changes. This technique permits arbitrarily thin fluid features with minimal re-sampling errors by reusing points from the original surface. We further reduce re-sampling artifacts with a subdivision-based mesh-stitching algorithm, and we use a higher order interpolating subdivision scheme to determine the location of any newly-created vertices. The resulting algorithm efficiently produces detailed fluid surfaces with arbitrarily thin features while maintaining a consistent topology with the underlying fluid simulation.


    1. Barber, C., and Huhdanpaa, H., 1995. Qhull, Softwarepackage.Google Scholar
    2. Bargteil, A., Goktekin, T., O’brien, J., and Strain, J. 2006. A semi-Lagrangian contouring method for fluid simulation. ACM Transactions on Graphics (TOG) 25, 1, 38. Google ScholarDigital Library
    3. Bhaniramka, P., Wenger, R., and Crawfis, R. 2000. Isosurfacing in higher dimensions. In Proceedings of the conference on Visualization’00, IEEE Computer Society Press Los Alamitos, CA, USA, 267–273. Google ScholarDigital Library
    4. Bhaniramka, P., Wenger, R., Crawfis, R., et al. 2004. Isosurface construction in any dimension using convex hulls. IEEE Transactions on Visualization and Computer Graphics 10, 2, 130–141. Google ScholarDigital Library
    5. Bischoff, S., and Kobbelt, L. 2005. Structure preserving CAD model repair. Computer Graphics Forum 24, 3, 527–536.Google ScholarCross Ref
    6. Bridson, R. 2008. Fluid simulation for computer graphics. AK Peters Ltd. Google ScholarDigital Library
    7. Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM Journal on Scientific Computing 31, 4, 2472–2493. Google ScholarDigital Library
    8. De Gennes, P., Brochard-Wyart, F., Quéré, D., and Reisinger, A. 2004. Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer Verlag.Google Scholar
    9. De Luca, L., and Costa, M. 2009. Instability of a spatially developing liquid sheet. Journal of Fluid Mechanics 331, 127–144.Google ScholarCross Ref
    10. Du, J., Fix, B., Glimm, J., Jia, X., Li, X., Li, Y., and Wu, L. 2006. A simple package for front tracking. Journal of Computational Physics 213, 2, 613–628. Google ScholarDigital Library
    11. Enright, D. P., Marschner, S. R., and Fedkiw, R. P. 2002. Animation and rendering of complex water surfaces. In Proceedings of ACM SIGGRAPH 2002, vol. 21, 736–744. Google ScholarDigital Library
    12. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In the Proceedings of ACM SIGGRAPH 2001, 23–30. Google ScholarDigital Library
    13. Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH 2004) 23, 3, 463–468. Google ScholarDigital Library
    14. Houston, B., Nielsen, M., Batty, C., Nilsson, O., and Museth, K. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Transactions on Graphics (TOG) 25, 1, 175. Google ScholarDigital Library
    15. Ivanov, I. 1988. Thin liquid films: fundamentals and applications. CRC.Google Scholar
    16. Ju, T., Losasso, F., Schaefer, S., and Warren, J. 2002. Dual contouring of hermite data. In ACM SIGGRAPH 2002 papers, ACM New York, NY, USA, 339–346. Google ScholarDigital Library
    17. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In the Proceedings of ACM SIGGRAPH 90, 49–57. Google ScholarDigital Library
    18. Kim, D., Song, O.-y., and Ko, H.-S. 2009. Stretching and wiggling liquids. In SIGGRAPH Asia ’09: ACM SIGGRAPH Asia 2009 papers, ACM, New York, NY, USA, 1–7. Google ScholarDigital Library
    19. Kobbelt, L., Botsch, M., Schwanecke, U., and Seidel, H. 2001. Feature sensitive surface extraction from volume data. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM New York, NY, USA, 57–66. Google ScholarDigital Library
    20. Lachaud, J., Taton, B., and en Informatique, L. 2003. Deformable model with adaptive mesh and automated topology changes. In Proc. 4th Int. Conference on 3D Digital Imaging and Modeling, Banff, Canada, IEEE, 12–19.Google ScholarCross Ref
    21. Lorensen, W., and Cline, H. 1987. Marching cubes: A high resolution 3D surface construction algorithm. In ACM SIGGRAPH 1987 papers, ACM, 169. Google ScholarDigital Library
    22. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Transactions on Graphics (TOG) 23, 3, 457–462. Google ScholarDigital Library
    23. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE Transactions on Visualization and Computer Graphics, 797–804. Google ScholarDigital Library
    24. McInerney, T., and Terzopoulos, D. 2000. T-snakes: Topology adaptive snakes. Medical Image Analysis 4, 2, 73–91.Google ScholarCross Ref
    25. Montani, C., Scateni, R., and Scopigno, R. 1994. A modified look-up table for implicit disambiguation of marching cubes. The Visual Computer 10, 6, 353–355.Google ScholarCross Ref
    26. Müller, M. 2009. Fast and robust tracking of fluid surfaces. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, 237–245. Google ScholarDigital Library
    27. Nesme, M., Kry, P., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. In ACM SIGGRAPH 2009 papers, ACM, 52. Google ScholarDigital Library
    28. Nielson, G., and Hamann, B. 1991. The asymptotic decider: resolving the ambiguity in marching cubes. In Proceedings of the 2nd conference on Visualization’91, IEEE Computer Society Press Los Alamitos, CA, USA, 83–91. Google ScholarDigital Library
    29. Osher, S., and Fedkiw, R. 2002. Level set methods and dynamic implicit surfaces. Springer Verlag.Google Scholar
    30. Pons, J.-P., and Boissonnat, J.-D. 2007. Delaunay deformable models: Topology-adaptive meshes based on the restricted Delaunay triangulation. Proceedings of CVPR ’07, 1–8.Google Scholar
    31. Rayleigh, L. 1883. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc 14, 1, 170–177.Google ScholarCross Ref
    32. Schaefer, S., and Warren, J. 2005. Dual Marching Cubes: primal contouring of dual grids. In Computer Graphics Forum, vol. 24, Citeseer, 195–201. Google ScholarDigital Library
    33. Stam, J. 1999. Stable fluids. In the Proceedings of ACM SIGGRAPH 99, 121–128. Google ScholarDigital Library
    34. Teran, J., Sifakis, E., Blemker, S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and Computer Graphics, 317–328. Google ScholarDigital Library
    35. Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. In ACM SIGGRAPH 2010 papers, ACM. Google ScholarDigital Library
    36. Varadhan, G., Krishnan, S., Sriram, T., and Manocha, D. 2004. Topology preserving surface extraction using adaptive subdivision. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, ACM, 244. Google ScholarDigital Library
    37. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. In ACM SIGGRAPH 2009 papers, ACM, 76. Google ScholarDigital Library
    38. Zaharescu, A., Boyer, E., and Horaud, R. 2007. Transformesh: a topology-adaptive mesh-based approach to surface evolution. Lecture Notes in Computer Science 4844, 166. Google ScholarDigital Library
    39. Zorin, D., Schröder, P., and Sweldens, W. 1996. Interpolating subdivision for meshes with arbitrary topology. In ACM SIGGRAPH 1996 papers, ACM, 192. Google ScholarDigital Library

ACM Digital Library Publication: