“Direct-to-indirect transfer for cinematic relighting” by Hasan, Pellacini and Bala

  • ©Milos Hasan, Fabio Pellacini, and Kavita Bala

Conference:


Type:


Title:

    Direct-to-indirect transfer for cinematic relighting

Presenter(s)/Author(s):



Abstract:


    This paper presents an interactive GPU-based system for cinematic relighting with multiple-bounce indirect illumination from a fixed view-point. We use a deep frame-buffer containing a set of view samples, whose indirect illumination is recomputed from the direct illumination on a large set of gather samples, distributed around the scene. This direct-to-indirect transfer is a linear transform which is particularly large, given the size of the view and gather sets. This makes it hard to precompute, store and multiply with. We address this problem by representing the transform as a set of sparse matrices encoded in wavelet space. A hierarchical construction is used to impose a wavelet basis on the unstructured gather cloud, and an image-based approach is used to map the sparse matrix computations to the GPU. We precompute the transfer matrices using a hierarchical algorithm and a variation of photon mapping in less than three hours on one processor. We achieve high-quality indirect illumination at 10-20 frames per second for complex scenes with over 2 million polygons, with diffuse and glossy materials, and arbitrary direct lighting models (expressed using shaders). We compute per-pixel indirect illumination without the need of irradiance caching or other subsampling techniques.

References:


    1. Annen, T., Kautz, J., Durand, F., and Seidel, H.-P. 2004. Spherical harmonic gradients for mid-range illumination. In Rendering Techniques 2004 Eurographics Symposium on Rendering, 331–336.]]Google Scholar
    2. Arikan, O., Forsyth, D. A., and O’Brien, J. F. 2005. Fast and detailed approximate global illumination by irradiance decomposition. In Proceedings of ACM SIGGRAPH 2005, 1108–1114.]] Google ScholarDigital Library
    3. Bala, K., Dorsey, J., and Teller, S. 1999. Interactive ray-traced scene editing using ray segment trees. In 10th Eurographics Workshop on Rendering, 39–52.]]Google Scholar
    4. Bala, K., Dorsey, J., and Teller, S. 1999. Radiance interpolants for accelerated bounded-error ray tracing. ACM Transactions on Graphics 18, 3, 213–256.]] Google ScholarDigital Library
    5. Bala, K., Walter, B., and Greenberg, D. 2003. Combining edges and points for interactive high-quality rendering. In Proceedings of ACM SIGGRAPH 2003, 631–640.]] Google ScholarDigital Library
    6. Barzel, R. 1997. Lighting controls for computer cinematography. Journal of Graphics Tools 2, 1, 1–20.]] Google ScholarDigital Library
    7. Bolz, J., Farmer, I., Grinspun, E., and Schröder, P. 2003. Sparse matrix solvers on the gpu: conjugate gradients and multigrid. Proceedings of ACM SIGGRAPH 2003, 917–924.]] Google ScholarDigital Library
    8. Briére, N., and Poulin, P. 1996. Hierarchical view-dependent structures for interactive scene manipulation. In Proceedings of ACM SIGGRAPH 96, 83–90.]] Google ScholarDigital Library
    9. Dayal, A., Woolley, C., Watson, B., and Luebke, D. 2005. Adaptive frameless rendering. In Proceedings of Eurographics Symposium on Rendering.]]Google Scholar
    10. Dmitriev, K., Brabec, S., Myszkowski, K., and Seidel, H.-P. 2002. Interactive Global Illumination Using Selective Photon Tracing. In 13th Eurographics Workshop on Rendering, 25–36.]] Google ScholarDigital Library
    11. Drettakis, G., and Sillion, F. 1997. Interactive Update of Global Illumination Using A Line-Space Hierarchy. In Proceedings of ACM SIGGRAPH 97, 57–64.]] Google ScholarDigital Library
    12. Gautron, P., Krivanek, J., Bouatouch, K., and Pattanaik, S. 2005. Radiance cache splatting: A gpu-friendly global illumination algorithm. In Proceedings of Eurographics Symposium on Rendering.]]Google Scholar
    13. Gershbein, R., and Hanrahan, P. M. 2000. A fast relighting engine for interactive cinematic lighting design. In Proceedings of ACM SIGGRAPH 2000, 353–358.]] Google ScholarDigital Library
    14. Gortler, S. J., Schröder, P., Cohen, M. F., and Hanrahan, P. 1993. Wavelet radiosity. In Proceedings of ACM SIGGRAPH 93, 221–230.]] Google ScholarDigital Library
    15. Hanrahan, P., Salzman, D., and Aupperle, L. 1991. A rapid hierarchical radiosity algorithm. Proceedings of ACM SIGGRAPH 91, 197–206.]] Google ScholarDigital Library
    16. Jensen, H. W. 1996. Global illumination using photon maps. In Proceedings of the Eurographics workshop on Rendering techniques ’96, 21–30.]] Google ScholarDigital Library
    17. Kautz, J., Sloan, P.-P., and Snyder, J. 2002. Fast, arbitrary brdf shading for low-frequency lighting using spherical harmonics. In EGRW ’02: Proceedings of the 13th Eurographics workshop on Rendering, 291–296.]] Google ScholarDigital Library
    18. Kristensen, A. W., Akenine-Möller, T., and Jensen, H. W. 2005. Precomputed local radiance transfer for real-time lighting design. Proceedings of ACM SIGGRAPH 2005, 1208–1215.]] Google ScholarDigital Library
    19. Liu, X., Sloan, P.-P. J., Shum, H.-Y., and Snyder, J. 2004. All-frequency precomputed radiance transfer for glossy objects. In Proceedings of Eurographics Symposium on Rendering, 337–344.]]Google Scholar
    20. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. All-frequency shadows using non-linear wavelet lighting approximation. Proceedings of ACM SIGGRAPH 2003, 376–381.]] Google ScholarDigital Library
    21. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2004. Triple product wavelet integrals for all-frequency relighting. Proceedings of ACM SIGGRAPH 2004, 477–487.]] Google ScholarDigital Library
    22. Pellacini, F., Vidimĉe?, K., Lefohn, A., Mohr, A., Leone, M., and Warren, J. 2005. Lpics: a hybrid hardware-accelerated relighting engine for computer cinematography. Proceedings of ACM SIGGRAPH 2005, 464–470.]] Google ScholarDigital Library
    23. Saito, T., and Takahashi, T. 1990. Comprehensible rendering of 3-d shapes. In Proceedings of ACM SIGGRAPH 90, 197–206.]] Google ScholarDigital Library
    24. Saito, T., and Takahashi, T. 1990. Comprehensible rendering of 3-d shapes. In Proceedings of ACM SIGGRAPH 90, 197–206.]] Google ScholarDigital Library
    25. Séquin, C. H., and Smyrl, E. K. 1989. Parameterized ray tracing. In Proceedings of ACM SIGGRAPH 89, 307–314.]] Google ScholarDigital Library
    26. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In Proceedings of ACM SIGGRAPH 2002, 527–536.]] Google ScholarDigital Library
    27. Smits, B. E., Arvo, J. R., and Salesin, D. H. 1992. An importance-driven radiosity algorithm. In Proceedings of ACM SIGGRAPH 92, 273–282.]] Google ScholarDigital Library
    28. Tabellion, E., and Lamorlette, A. 2004. An approximate global illumination system for computer generated films. Proceedings of ACM SIGGRAPH 2005, 469–476.]] Google ScholarDigital Library
    29. Tole, P., Pellacini, F., Walter, B., and Greenberg, D. P. 2002. Interactive global illumination in dynamic scenes. Proceedings of ACM SIGGRAPH 2002, 537–546.]] Google ScholarDigital Library
    30. Wald, I., Kollig, T., Benthin, C., Keller, A., and Slusallek, P. 2002. Interactive Global Illumination. In 13th Eurographics Workshop on Rendering, 15–24.]] Google ScholarDigital Library
    31. Walter, B., Drettakis, G., and Parker, S. 1999. Interactive rendering using the Render Cache. In 10th Eurographics Workshop on Rendering, 19–30.]]Google Scholar
    32. Walter, B., Drettakis, G., and Greenberg, D. 2002. Enhancing and optimizing the Render Cache. In 13th Eurographics Workshop on Rendering, 37–42.]] Google ScholarDigital Library
    33. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: A scalable approach to illumination. In Proceedings of ACM SIGGRAPH 2005, 1098–1107.]] Google ScholarDigital Library
    34. Wang, R., Tran, J., and Luebke, D. P. 2004. All-frequency relighting of non-diffuse objects using separable brdf approximation. In Proceedings of Eurographics Symposium on Rendering, 345–354.]]Google Scholar
    35. Wang, R., Tran, J., and Luebke, D. 2005. All-frequency interactive relighting of translucent objects with single and multiple scattering. Proceedings of ACM SIGGRAPH 2005, 1202–1207.]] Google ScholarDigital Library
    36. Ward, G., and Simmons, M. 1999. The holodeck ray cache: an interactive rendering system for global illumination in nondiffuse environments. ACM Transactions on Graphics 18, 4, 361–368.]] Google ScholarDigital Library
    37. Ward, G. J., Rubinistein, F. M., and Clear, R. D. 1988. A ray tracing solution for diffuse interreflection. In Proceedings of ACM SIGGRAPH 88, 85–92.]] Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: