“Automatic Machine Knitting of 3D Meshes” by Narayanan, Albaugh, Hodgins, Coros and McCann

  • ©Vidya Narayanan, Lea Albaugh, Jessica K. Hodgins, Stelian Coros, and James (Jaimy) McCann

Conference:


Type:


Title:

    Automatic Machine Knitting of 3D Meshes

Session/Category Title: Textiles & Microstructures


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present the first computational approach that can transform three-dimensional (3D) meshes, created by traditional modeling programs, directly into instructions for a computer-controlled knitting machine. Knitting machines are able to robustly and repeatably form knitted 3D surfaces from yarn but have many constraints on what they can fabricate. Given user-defined starting and ending points on an input mesh, our system incrementally builds a helix-free, quad-dominant mesh with uniform edge lengths, runs a tracing procedure over this mesh to generate a knitting path, and schedules the knitting instructions for this path in a way that is compatible with machine constraints. We demonstrate our approach on a wide range of 3D meshes.

References:


    1. Sarah-Marie Belcastro. 2009. Every topological surface can be knit: A proof. J. Math. Arts 3, 2 (2009), 67–83.
    2. Donald J. Berndt and James Clifford. 1994. Using dynamic time warping to find patterns in time series. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’94), Vol. 10. 359–370. 
    3. David Bommes, Timm Lempfer, and Leif Kobbelt. 2011. Global structure optimization of quadrilateral meshes. In Computer Graphics Forum, Vol. 30. 375–384.
    4. David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini, and Denis Zorin. 2013. Quad-mesh generation and processing: A survey. In Computer Graphics Forum, Vol. 32. 51–76. 
    5. Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A. Otaduy. 2015. Efficient simulation of knitted cloth using persistent contacts. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 55–61. 
    6. Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5 (2013). 
    7. Shen Dong, Scott Kircher, and Michael Garland. 2005. Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Computer Aided Geometric Design 22, 5 (2005), 392–423. 
    8. Herbert Edelsbrunner and John Harer. 2010. Computational Topology: An Introduction. American Mathematical Society.
    9. Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping objects from flat plates with tension-actuated curvature. ACM Trans. Graph. 36, 4, Article 64 (July 2017), 64:1–64:12 pages. 
    10. Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008b. Knitting a 3D model. In Computer Graphics Forum.
    11. Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008a. Knitty: 3D modeling of knitted animals with a production assistant interface. In Eurographics 2008 Annex to the Conference Proceedings.
    12. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating knitted cloth at the yarn level. ACM Trans. Graph. 27, 3, Article 65 (Aug. 2008), 65:1–65:9 pages. 
    13. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient yarn-based cloth with adaptive contact linearization. ACM Trans. Graph. 29, 4, Article 105 (July 2010), 105:1–105:10 pages. 
    14. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe patterns on surfaces. ACM Trans. Graph. 34, 4 (2015), 39:1–39:11. 
    15. Bruno Lévy and Hao Richard Zhang. 2010. Spectral mesh processing. In ACM SIGGRAPH 2010 Courses. ACM, 8. 
    16. Ali Mahdavi-Amiri, Philip Whittingham, and Faramarz Samavati. 2015. Cover-it: An interactive system for covering 3d prints. In Proceedings of the 41st Graphics Interface Conference. Canadian Information Processing Society, 73–80. 
    17. James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jennifer Mankoff, and Jessica Hodgins. 2016. A compiler for 3D machine knitting. ACM Trans. Graph. 35, 4, Article 49 (July 2016), 49:1–49:11. 
    18. Michael Meißner and Bernd Eberhardt. 1998. The art of knitted fabrics, realistic & physically based modelling of knitted patterns. In Computer Graphics Forum, Vol. 17. 355–362.
    19. Mariana Popescu, Matthias Rippmann, Tom Van Mele, and Philippe Block. 2018. Automated generation of knit patterns for non-developable surfaces. In Humanizing Digital Reality, De Rycke K. et al. (ed.). Springer, Singapore.
    20. Gerard Rubio, Triambak Saxena, and Tom Catling. 2017. Kniterate. Retrieved from https://www.kniterate.com.
    21. Shima Seiki. 2011. SDS-ONE Apex3. Retrieved from http://www.shimaseiki.com/product/design/sdsone_apex/flat/.
    22. Mélina Skouras, Bernhard Thomaszewski, Bernd Bickel, and Markus Gross. 2012. Computational design of rubber balloons. In Computer Graphics Forum, Vol. 31. 835–844. 
    23. Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing inflatable structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014), 63:1–63:10. 
    24. Stoll. 2011. M1Plus pattern software. Retrieved from http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1.
    25. Jenny Underwood. 2009. The Design of 3D Shape Knitted Preforms. Ph.D. thesis. RMIT University.
    26. Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch meshes for modeling knitted clothing with yarn-level detail. ACM Trans. Graph. 31, 4, Article 37 (July 2012), 37:1–37:12. 

ACM Digital Library Publication: